3 research outputs found

    MSC-Regulated MicroRNAs Converge on the Transcription Factor FOXP2 and Promote Breast Cancer Metastasis

    Get PDF
    SummaryMesenchymal stem/stromal cells (MSCs) are progenitor cells shown to participate in breast tumor stroma formation and to promote metastasis. Despite expanding knowledge of their contributions to breast malignancy, the underlying molecular responses of breast cancer cells (BCCs) to MSC influences remain incompletely understood. Here, we show that MSCs cause aberrant expression of microRNAs, which, led by microRNA-199a, provide BCCs with enhanced cancer stem cell (CSC) properties. We demonstrate that such MSC-deregulated microRNAs constitute a network that converges on and represses the expression of FOXP2, a forkhead transcription factor tightly associated with speech and language development. FOXP2 knockdown in BCCs was sufficient in promoting CSC propagation, tumor initiation, and metastasis. Importantly, elevated microRNA-199a and depressed FOXP2 expression levels are prominent features of malignant clinical breast cancer and are associated significantly with poor survival. Our results identify molecular determinants of cancer progression of potential utility in the prognosis and therapy of breast cancer

    microRNAs converge on the transcription factor FOXP2 and promote breast cancer metastasis

    Get PDF
    Mesenchymal stem/stromal cells (MSCs) are pro- genitor cells shown to participate in breast tumor stroma formation and to promote metastasis. Despite expanding knowledge of their contributions to breast malignancy, the underlying molecular re- sponses of breast cancer cells (BCCs) to MSC influ- ences remain incompletely understood. Here, we show that MSCs cause aberrant expression of micro- RNAs, which, led by microRNA-199a, provide BCCs with enhanced cancer stem cell (CSC) properties. We demonstrate that such MSC-deregulated micro- RNAs constitute a network that converges on and represses the expression of FOXP2, a forkhead transcription factor tightly associated with speech and language development. FOXP2 knockdown in BCCs was sufficient in promoting CSC propaga- tion, tumor initiation, and metastasis. Importantly, elevated microRNA-199a and depressed FOXP2 expression levels are prominent features of malig- nant clinical breast cancer and are associated signif- icantly with poor survival. Our results identify molec- ular determinants of cancer progression of potential utility in the prognosis and therapy of breast cancer

    Annual Selected Bibliography

    No full text
    corecore