1,041 research outputs found
Impact of Tandem Repeats on the Scaling of Nucleotide Sequences
Techniques such as detrended fluctuation analysis (DFA) and its extensions
have been widely used to determine the nature of scaling in nucleotide
sequences. In this brief communication we show that tandem repeats which are
ubiquitous in nucleotide sequences can prevent reliable estimation of possible
long-range correlations. Therefore, it is important to investigate the presence
of tandem repeats prior to scaling exponent estimation.Comment: 14 Pages, 3 Figure
Strategies for analyzing highly enriched IP-chip datasets
BACKGROUND: Chromatin immunoprecipitation on tiling arrays (ChIP-chip) has been employed to examine features such as protein binding and histone modifications on a genome-wide scale in a variety of cell types. Array data from the latter studies typically have a high proportion of enriched probes whose signals vary considerably (due to heterogeneity in the cell population), and this makes their normalization and downstream analysis difficult. RESULTS: Here we present strategies for analyzing such experiments, focusing our discussion on the analysis of Bromodeoxyruridine (BrdU) immunoprecipitation on tiling array (BrdU-IP-chip) datasets. BrdU-IP-chip experiments map large, recently replicated genomic regions and have similar characteristics to histone modification/location data. To prepare such data for downstream analysis we employ a dynamic programming algorithm that identifies a set of putative unenriched probes, which we use for both within-array and between-array normalization. We also introduce a second dynamic programming algorithm that incorporates a priori knowledge to identify and quantify positive signals in these datasets. CONCLUSION: Highly enriched IP-chip datasets are often difficult to analyze with traditional array normalization and analysis strategies. Here we present and test a set of analytical tools for their normalization and quantification that allows for accurate identification and analysis of enriched regions
Effect of coarse-graining on detrended fluctuation analysis
Several studies have investigated the scaling behavior in naturally occurring
biological and physical processes using techniques such as detrended
fluctuation analysis (DFA). Data acquisition is an inherent part of these
studies and maps the continuous process into digital data. The resulting
digital data is discretized in amplitude and time, and shall be referred to as
coarse-grained realization in the present study. Since coarse-graining precedes
scaling exponent analysis, it is important to understand its effects on scaling
exponent estimators such as DFA. In this brief communication, k-means
clustering is used to generate coarse-grained realizations of data sets with
different correlation properties, namely: anti-correlated noise, long-range
correlated noise and uncorrelated noise. It is shown that the coarse-graining
can significantly affect the scaling exponent estimates. It is also shown that
scaling exponent can be reliably estimated even at low levels of
coarse-graining and the number of the clusters required varies across the data
sets with different correlation properties.Comment: 21 Pages, 10 Figures. Physica A, 2005 (in press
Evaluating the role of a galanin enhancer genotype on a range of metabolic, depressive and addictive phenotypes
Funded by •ERC. Grant Number: 284167 •NIH. Grant Number: 1RO1DK0921127-01 •NWO. Grant Numbers: 463-06-001, 451-04-034Peer reviewedPublisher PD
Fkh1 and Fkh2 bind multiple chromosomal elements in the S. cerevisiae genome with distinct specificities and cell cycle dynamics
Forkhead box (FOX) transcription factors regulate a wide variety of cellular functions in higher eukaryotes, including cell cycle control and developmental regulation. In Saccharomyces cerevisiae, Forkhead proteins Fkh1 and Fkh2 perform analogous functions, regulating genes involved in cell cycle control, while also regulating mating-type silencing and switching involved in gamete development. Recently, we revealed a novel role for Fkh1 and Fkh2 in the regulation of replication origin initiation timing, which, like donor preference in mating-type switching, appears to involve long-range chromosomal interactions, suggesting roles for Fkh1 and Fkh2 in chromatin architecture and organization. To elucidate how Fkh1 and Fkh2 regulate their target DNA elements and potentially regulate the spatial organization of the genome, we undertook a genome-wide analysis of Fkh1 and Fkh2 chromatin binding by ChIP-chip using tiling DNA microarrays. Our results confirm and extend previous findings showing that Fkh1 and Fkh2 control the expression of cell cycle-regulated genes. In addition, the data reveal hundreds of novel loci that bind Fkh1 only and exhibit a distinct chromatin structure from loci that bind both Fkh1 and Fkh2. The findings also show that Fkh1 plays the predominant role in the regulation of a subset of replication origins that initiate replication early, and that Fkh1/2 binding to these loci is cell cycle-regulated. Finally, we demonstrate that Fkh1 and Fkh2 bind proximally to a variety of genetic elements, including centromeres and Pol III-transcribed snoRNAs and tRNAs, greatly expanding their potential repertoire of functional targets, consistent with their recently suggested role in mediating the spatial organization of the genome
Quantitative Imaging of Protein-Protein Interactions by Multiphoton Fluorescence Lifetime Imaging Microscopy using a Streak camera
Fluorescence Lifetime Imaging Microscopy (FLIM) using multiphoton excitation
techniques is now finding an important place in quantitative imaging of
protein-protein interactions and intracellular physiology. We review here the
recent developments in multiphoton FLIM methods and also present a description
of a novel multiphoton FLIM system using a streak camera that was developed in
our laboratory. We provide an example of a typical application of the system in
which we measure the fluorescence resonance energy transfer between a
donor/acceptor pair of fluorescent proteins within a cellular specimen.Comment: Overview of FLIM techniques, StreakFLIM instrument, FRET application
Computational system identification of continuous-time nonlinear systems using approximate Bayesian computation
In this paper, we derive a system identification framework for continuous-time nonlinear systems, for the first time using a simulation-focused computational Bayesian approach. Simulation approaches to nonlinear system identification have been shown to outperform regression methods under certain conditions, such as non-persistently exciting inputs and fast-sampling. We use the approximate Bayesian computation (ABC) algorithm to perform simulation-based inference of model parameters. The framework has the following main advantages: (1) parameter distributions are intrinsically generated, giving the user a clear description of uncertainty, (2) the simulation approach avoids the difficult problem of estimating signal derivatives as is common with other continuous-time methods, and (3) as noted above, the simulation approach improves identification under conditions of non-persistently exciting inputs and fast-sampling. Term selection is performed by judging parameter significance using parameter distributions that are intrinsically generated as part of the ABC procedure. The results from a numerical example demonstrate that the method performs well in noisy scenarios, especially in comparison to competing techniques that rely on signal derivative estimation
Enzyme-Mediated Modification of Single-Domain Antibodies for Imaging Modalities with Different Characteristics
Antibodies are currently the fastest-growing class of therapeutics. Although naked antibodies have proven valuable as pharmaceutical agents, they have some limitations, such as low tissue penetration and a long circulatory half-life. They have been conjugated to toxic payloads, PEGs, or radioisotopes to increase and optimize their therapeutic efficacy. Although nonspecific conjugation is suitable for most in vitro applications, it has become evident that site specifically modified antibodies may have advantages for in vivo applications. Herein we describe a novel approach in which the antibody fragment is tagged with two handles: one for the introduction of a fluorophore or F isotope, and the second for further modification of the fragment with a PEG moiety or a second antibody fragment to tune its circulatory half-life or its avidity. Such constructs, which recognize Class II MHC products and CD11b, showed high avidity and specificity. They were used to image cancers and could detect small tumors.Cancer Research Institute (New York, N.Y.)United States. National Institutes of Health (R01-AI087879-06)United States. National Institutes of Health (DP1-GM106409-03)United States. National Institutes of Health (R01-GM100518-04
- …
