197 research outputs found

    Divergent effects of Nitric oxide on airway epithelial cell activation

    Get PDF
    Nitric oxide (NO*) is a gaseous mediator synthesized by Nitric oxide sinthases. NO* is involved in the modulation of inflammation, but its role in airway inflammation remains controversial. We investigated the role of NO* in the synthesis of the chemok Nes Interleukin-8 and Monocyte Chemotactic Protein-1, and of Intercellular Adhesion Molecule-1 by human airway epithelial cells. normal human bronchial epithelial cells and the bronchial epithelial cell line BEAS-2B were used. Neterleukin-8 (IL-8) and Monocyte Chemotactic Protein-1 (MCP-1) secretion and Intercellular Adhesion Molecule-1 (ICAM-1) expression were measured by ELISA. mRNA was assessed by semiquantitative RTI-PCR. Neterleukin-8 secretion was significantly reduced after 24h incubation with the NO* donor, sodium nitroprusside. The effect was dose-dependent. Similar results were obta Ned with S-Nitroso-N-D,L-penicillam Ne and S-Nitroso-L-glutathione. Inhibition of endogenous NO* with the Nitric oxide synthase inhibitor N-Nitro-L-arg N Ne-methyl-esther caused an increase in IL-8 secretion by lypopolisaccharide- and cytok Ne-stimulated BEAS-2B cells. Sodium nitroprusside also caused a reduction in Monocyte Chemotactic Protein-1 secretion by both cell types. In contrast, Intercellular Adhesion Molecule-1 expression was upregulated by sodium NItroprusside. RTI-PCR results indĂ­cate that the modulation of protein levels was paralleled by modification in mRNA levels. NO* has divergent effects on the synthesis of different inflammatory mediators in human bronchial epithelial cells

    The use of chest magnetic resonance imaging in interstitial lung disease: A systematic review

    Get PDF
    Thin-slices multi-detector computed tomography (MDCT) plays a key role in the differential diagnosis of interstitial lung disease (ILD). However, thin-slices MDCT has a limited ability to detect active inflammation, which is an important target of newly developed ILD drug therapy. Magnetic resonance imaging (MRI), thanks to its multi-parameter capability, provides better tissue characterisation than thin-slices MDCT. Our aim was to summarise the current status of MRI applications in ILD and to propose an ILD-MRI protocol. A systematic literature search was conducted for relevant studies on chest MRI in patients with ILD. We retrieved 1246 papers of which 55 original papers were selected for the review. We identified 24 studies comparing image quality of thin-slices MDCT and MRI using several MRI sequences. These studies described new MRI sequences to assess ILD parenchymal abnormalities, such as honeycombing, reticulation and ground-glass opacity. Thin-slices MDCT remains superior to MRI for morphological imaging. However, recent studies with ultra-short echo-time MRI showed image quality comparable to thin-slices MDCT. Several studies demonstrated the added value of chest MRI by using functional imaging, especially to detect and quantify inflammatory changes. We concluded that chest MRI could play a role in ILD patients to differentiate inflammatory and fibrotic changes and to assess efficacy of new ILD drugs

    The A2B adenosine receptor modulates the epithelial- mesenchymal transition through the balance of cAMP/PKA and MAPK/ERK pathway activation in human epithelial lung cells

    Get PDF
    The epithelial-mesenchymal transition (EMT) is a complex process in which cell phenotype switches from the epithelial to mesenchymal one. The deregulations of this process have been related with the occurrence of different diseases such as lung cancer and fibrosis. In the last decade, several efforts have been devoted in understanding the mechanisms that trigger and sustain this transition process. Adenosine is a purinergic signaling molecule that has been involved in the onset and progression of chronic lung diseases and cancer through the A2Badenosine receptor subtype activation, too. However, the relationship between A2BAR and EMT has not been investigated, yet. Herein, the A2BAR characterization was carried out in human epithelial lung cells. Moreover, the effects of receptor activation on EMT were investigated in the absence and presence of transforming growth factor-beta (TGF-β1), which has been known to promote the transition. The A2BAR activation alone decreased and increased the expression of epithelial markers (E-cadherin) and the mesenchymal one (Vimentin, N-cadherin), respectively, nevertheless a complete EMT was not observed. Surprisingly, the receptor activation counteracted the EMT induced by TGF-β1. Several intracellular pathways regulate the EMT: high levels of cAMP and ERK1/2 phosphorylation has been demonstrated to counteract and promote the transition, respectively. The A2BAR stimulation was able to modulated these two pathways, cAMP/PKA and MAPK/ERK, shifting the fine balance toward activation or inhibition of EMT. In fact, using a selective PKA inhibitor, which blocks the cAMP pathway, the A2BAR-mediated EMT promotion were exacerbated, and conversely the selective inhibition of MAPK/ERK counteracted the receptor-induced transition. These results highlighted the A2BAR as one of the receptors involved in the modulation of EMT process. Nevertheless, its activation is not enough to trigger a complete transition, its ability to affect different intracellular pathways could represent a mechanism at the basis of EMT maintenance/inhibition based on the extracellular microenvironment. Despite further investigations are needed, herein for the first time the A2BAR has been related to the EMT process, and therefore to the different EMT-related pathologies

    One year prospective survey of Candida bloodstream infections in Scotland

    Get PDF
    A 12 month survey of candidaemia in Scotland, UK, in which every Scottish hospital laboratory submitted all blood isolates of yeasts for identification, strain typing and susceptibility testing, provided 300 isolates from 242 patients, generating incidence data of 4.8 cases per 100 000 population per year and 5.9 cases per 100 000 acute occupied bed days; 27.9 % of cases occurred in intensive care units. More than half the patients with candidaemia had an underlying disease involving the abdomen, 78 % had an indwelling intravenous catheter, 62 % had suffered a bacterial infection within the 2 weeks prior to candidaemia and 37 % had undergone a laparotomy. Candida albicans was the infecting species in 50 % of cases, followed by Candida glabrata (21 %) and Candida parapsilosis (12 %). Seven cases of candidaemia were caused by Candida dubliniensis, which was more prevalent even than Candida lusitaniae and Candida tropicalis (six cases each). Among C. glabrata isolates, 55 % showed reduced susceptibility to fluconazole, but azole resistance among other species was extremely low. Multilocus sequence typing showed isolates with high similarity came from different hospitals across the country, and many different types came from the hospitals that submitted the most isolates, indicating no tendency towards hospital-specific endemic strains. Multiple isolates of C. albicans and C. glabrata from individual patients were of the same strain type with single exceptions for each species. The high prevalence of candidaemia in Scotland, relative to other population-based European studies, and the high level of reduced fluconazole susceptibility of Scottish C. glabrata isolates warrant continued future surveillance of invasive Candida infections

    Differences in proteolytic activity and gene profiles of fungal strains isolated from the total parenteral nutrition patients

    Get PDF
    Fungal infections constitute a serious clinical problem in the group of patients receiving total parenteral nutrition. The majority of species isolated from infections of the total parenteral nutrition patients belong to Candida genus. The most important factors of Candida spp. virulence are the phenomenon of “phenotypic switching,” adhesins, dimorphism of fungal cells and the secretion of hydrolytic enzymes such as proteinases and lipases, including aspartyl proteinases. We determined the proteolytic activity of yeast-like fungal strains cultured from the clinical materials of patients receiving total parenteral nutrition and detected genes encoding aspartyl proteinases in predominant species Candida glabrata—YPS2, YPS4, and YPS6, and Candida albicans—SAP1–3, SAP4, SAP5, and SAP6. C. albicans released proteinases on the various activity levels. All C. glabrata strains obtained from the clinical materials of examined and control groups exhibited secretion of the proteinases. All 13 isolates of C. albicans possessed genes SAP1–3. Gene SAP4 was detected in genome of 11 C. albicans strains, SAP5 in 6, and SAP6 in 11. Twenty-six among 31 of C. glabrata isolates contained YPS2 gene, 21 the YPS4 gene, and 28 the YPS6 gene. We observed that clinical isolates of C. albicans and C. glabrata differed in SAPs and YPSs gene profiles, respectively, and displayed differentiated proteolytic activity. We suppose that different sets of aspartyl proteinases genes as well as various proteinase-activity levels would have the influence on strains virulence

    A New Phenotype in Candida-Epithelial Cell Interaction Distinguishes Colonization- versus Vulvovaginal Candidiasis- Associated Strains

    Get PDF
    Vulvovaginal candidiasis (VVC) affects nearly 3/4 of women during their lifetime, and its symptoms seriously reduce quality of life. Although Candida albicans is a common commensal, it is unknown if VVC results from a switch from a commensal to pathogenic state, if only some strains can cause VVC, and/or if there is displacement of commensal strains with more pathogenic strains. We studied a set of VVC and colonizing C. albicans strains to identify consistent in vitro phenotypes associated with one group or the other. We find that the strains do not differ in overall genetic profile or behavior in culture media (i.e., multilocus sequence type [MLST] profile, rate of growth, and filamen- tation), but they show strikingly different behaviors during their interactions with vaginal epithelial cells. Epithelial infections with VVC-derived strains yielded stronger fungal prolif- eration and shedding of fungi and epithelial cells. Transcriptome sequencing (RNA-seq) analysis of representative epithelial cell infections with selected pathogenic or commensal isolates identified several differentially activated epithelial signaling pathways, including the integrin, ferroptosis, and type I interferon pathways; the latter has been implicated in damage protection. Strikingly, inhibition of type I interferon signaling selectively increases fungal shedding of strains in the colonizing cohort, suggesting that increased shedding correlates with lower interferon pathway activation. These data suggest that VVC strains may intrinsically have enhanced pathogenic potential via differential elicitation of epithelial responses, including the type I interferon pathway. Therefore, it may eventually be possible to evaluate pathogenic potential in vitro to refine VVC diagnosis

    The use of chest magnetic resonance imaging in interstitial lung disease: a systematic review

    Get PDF
    Thin-slices multi-detector computed tomography (MDCT) plays a key role in the differential diagnosis of interstitial lung disease (ILD). However, thin-slices MDCT has a limited ability to detect active inflammation, which is an important target of newly developed ILD drug therapy. Magnetic resonance imaging (MRI), thanks to its multi-parameter capability, provides better tissue characterisation than thin-slices MDCT.Our aim was to summarise the current status of MRI applications in ILD and to propose an ILD-MRI protocol. A systematic literature search was conducted for relevant studies on chest MRI in patients with ILD.We retrieved 1246 papers of which 55 original papers were selected for the review. We identified 24 studies comparing image quality of thin-slices MDCT and MRI using several MRI sequences. These studies described new MRI sequences to assess ILD parenchymal abnormalities, such as honeycombing, reticulation and ground-glass opacity. Thin-slices MDCT remains superior to MRI for morphological imaging. However, recent studies with ultra-short echo-time MRI showed image quality comparable to thin-slices MDCT. Several studies demonstrated the added value of chest MRI by using functional imaging, especially to detect and quantify inflammatory changes.We concluded that chest MRI could play a role in ILD patients to differentiate inflammatory and fibrotic changes and to assess efficacy of new ILD drugs

    Analysis of clinical and environmental Candida parapsilosis isolates by microsatellite genotyping – a tool for hospital infections surveillance

    Get PDF
    Candida parapsilosis emerged as an important opportunistic pathogen, causing candidaemia worldwide. Nosocomial outbreaks triggered by this species have been frequently described, particularly in cancer patients. For a better understanding of its epidemiology, several typing methods are used and microsatellite analysis has been reported as highly discriminant. The main objective of this work was to study C. parapsilosis isolates by application of microsatellite genotyping to distinguish epidemiologically related strains, compare clinical and environmental isolates and determine possible routes of dispersion of the isolates in the hospital setting. A total of 129 C. parapsilosis isolates from different origins, including hospital environment and hands of healthcare workers, were genotyped using four microsatellite markers. The isolates were recovered from different health institutions. Analysis of C. parapsilosis isolates from hospital environment showed great genotypic diversity; however, the same or very similar genotypes were also found. The same multilocus genotype was shared by isolates recovered from the hand of a healthcare worker, from the hospital environment and from patients of the same healthcare institution, suggesting that these could be possible routes of transmission and that infections due to C. parapsilosis may be mainly related with exogenous transmission to the patient. Examination of sequential isolates from the same patients showed that colonizing and bloodstream isolates had the same multilocus genotype in the majority of cases. We demonstrate that this typing method is able to distinguish clonal clusters from genetically unrelated genotypes and can be a valuable tool to support epidemiologic investigations in the hospital setting.This research was supported by FCT/MEC, Portugal through Portuguese funds (PIDDAC) - Pest-OE/BIA/UI4050/2014 (CBMA), University of Minho. Raquel Sabino was financially supported by a fellowship from FCT, Portugal (contract BD/22100/2005).info:eu-repo/semantics/publishedVersio

    Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Identification of Yeasts Is Contingent on Robust Reference Spectra

    Get PDF
    BACKGROUND: Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for yeast identification is limited by the requirement for protein extraction and for robust reference spectra across yeast species in databases. We evaluated its ability to identify a range of yeasts in comparison with phenotypic methods. METHODS: MALDI-TOF MS was performed on 30 reference and 167 clinical isolates followed by prospective examination of 67 clinical strains in parallel with biochemical testing (total n = 264). Discordant/unreliable identifications were resolved by sequencing of the internal transcribed spacer region of the rRNA gene cluster. PRINCIPAL FINDINGS: Twenty (67%; 16 species), and 24 (80%) of 30 reference strains were identified to species, (spectral score ≥2.0) and genus (score ≥1.70)-level, respectively. Of clinical isolates, 140/167 (84%) strains were correctly identified with scores of ≥2.0 and 160/167 (96%) with scores of ≥1.70; amongst Candida spp. (n = 148), correct species assignment at scores of ≥2.0, and ≥1.70 was obtained for 86% and 96% isolates, respectively (vs. 76.4% by biochemical methods). Prospectively, species-level identification was achieved for 79% of isolates, whilst 91% and 94% of strains yielded scores of ≥1.90 and ≥1.70, respectively (100% isolates identified by biochemical methods). All test scores of 1.70-1.90 provided correct species assignment despite being identified to "genus-level". MALDI-TOF MS identified uncommon Candida spp., differentiated Candida parapsilosis from C. orthopsilosis and C. metapsilosis and distinguished between C. glabrata, C. nivariensis and C. bracarensis. Yeasts with scores of <1.70 were rare species such as C. nivariensis (3/10 strains) and C. bracarensis (n = 1) but included 4/12 Cryptococcus neoformans. There were no misidentifications. Four novel species-specific spectra were obtained. Protein extraction was essential for reliable results. CONCLUSIONS: MALDI-TOF MS enabled rapid, reliable identification of clinically-important yeasts. The addition of spectra to databases and reduction in identification scores required for species-level identification may improve its utility
    • …
    corecore