317 research outputs found

    Microvascular Alteration in COVID-19 Documented by Nailfold Capillaroscopy

    Get PDF
    COVID-19 is a multisystemic disease that mainly affects and causes dysregulation of the endothelium, causing systemic manifestations. A nailfold video capillaroscopy is a safe, easy, and noninvasive method to evaluate microcirculation alteration. In this review, we analyzed the literature available to date regarding the object of nailfold video capillaroscopy (NVC) use in patients with a SARS-CoV-2 infection, both in the acute phase and after discharge. The scientific evidence pointed out the main alterations in capillary circulation shown by NVC, so reviewing the findings of each article allowed us to define and analyze the future prospects and needs for possibly including NVC within the management of patients with COVID-19, both during and after the acute phase

    Host-Based Treatments for Severe COVID-19

    Get PDF
    COVID-19 has been a global health problem since 2020. There are different spectrums of manifestation of this disease, ranging from asymptomatic to extremely severe forms requiring admission to intensive care units and life-support therapies, mainly due to severe pneumonia. The progressive understanding of this disease has allowed researchers and clinicians to implement different therapeutic alternatives, depending on both the severity of clinical involvement and the causative molecular mechanism that has been progressively explored. In this review, we analysed the main therapeutic options available to date based on modulating the host inflammatory response to SARS-CoV-2 infection in patients with severe and critical illness. Although current guidelines are moving toward a personalised treatment approach titrated on the timing of presentation, disease severity, and laboratory parameters, future research is needed to identify additional biomarkers that can anticipate the disease course and guide targeted interventions on an individual basis

    Oscillometry Longitudinal Data on COVID-19 Acute Respiratory Syndrome Treated with Non-Invasive Respiratory Support

    Get PDF
    Background: Oscillometry allows for the non-invasive measurements of lung mechanics. In COVID-19 ARDS patients treated with Non-Invasive Oxygen Support (NI-OS), we aimed to (1) observe lung mechanics at the patients’ admission and their subsequent changes, (2) compare lung mechanics with clinical and imaging data, and (3) evaluate whether lung mechanics helps to predict clinical outcomes. Methods: We retrospectively analyzed the data from 37 consecutive patients with moderate–severe COVID-19 ARDS. Oscillometry was performed on their 1st, 4th, and 7th day of hospitalization. Resistance (R5), reactance (X5), within-breath reactance changes (ΔX5), and the frequency dependence of the resistance (R5–R19) were considered. Twenty-seven patients underwent computed tomographic pulmonary angiography (CTPA): collapsed, poorly aerated, and normally inflated areas were quantified. Adverse outcomes were defined as intubation or death. Results: Thirty-two patients were included in this study. At the first measurement, only 44% of them had an abnormal R5 or X5. In total, 23 patients had measurements performed on their 3rd day and 7 on their 7th day of hospitalization. In general, their R5, R5–R19, and ΔX decreased with time, while their X5 increased. Collapsed areas on the CTPA correlated with the X5 z-score (ρ = −0.38; p = 0.046), while poorly aerated areas did not. Seven patients had adverse outcomes but did not present different oscillometry parameters on their 1st day of hospitalization. Conclusions: Our study confirms the feasibility of oscillometry in critically ill patients with COVID-19 pneumonia undergoing NI-OS. The X5 z-scores indicates collapsed but not poorly aerated lung areas in COVID-19 pneumonia. Our data, which show a severe impairment of gas exchange despite normal reactance in most patients with COVID-19 ARDS, support the hypothesis of a composite COVID-19 ARDS physiopathology

    Prosody abilities in a large sample of affective and non-affective first episode psychosis patients

    Get PDF
    Objective: Prosody comprehension deficits have been reported in major psychoses. It is still not clear whether these deficits occur at early psychosis stages. The aims of our study were to investigate a) linguistic and emotional prosody comprehension abilities in First Episode Psychosis (FEP) patients compared to healthy controls (HC); b) performance differences between non-affective (FEP-NA) and affective (FEP-A) patients, and c) association between symptoms severity and prosodic features. Methods: A total of 208 FEP (156 FEP-NA and 52 FEP-A) patients and 77 HC were enrolled and assessed with the Italian version of the “Protocole Montréal d'Evaluation de la Communication” to evaluate linguistic and emotional prosody comprehension. Clinical variables were assessed with a comprehensive set of standardized measures. Results: FEP patients displayed significant linguistic and emotional prosody deficits compared to HC, with FEP-NA showing greater impairment than FEP-A. Also, significant correlations between symptom severity and prosodic features in FEP patients were found. Conclusions: Our results suggest that prosodic impairments occur at the onset of psychosis being more prominent in FEP-NA and in those with severe psychopathology. These findings further support the hypothesis that aprosodia is a core feature of psychosis

    Screening of olive germplasm for resistance to Xylella fastidiosa ST53: the state of the art

    Get PDF
    While different sources of natural resistance to X. fastidiosa have been described in grapevines and citrus, lack of solid information exists on possible sources of resistance/tolerance in the cultivars that characterize the wide olive germplasm. Preliminary field observations and laboratory analyses of a few cultivars, have shown that differential responses to X. fastidiosa infections exist. To confirm these preliminary findings, a large panel of olive cultivars is being specifically investigated. Currently, the screening procedure relies on field observations looking for symptomless subjects (trees of known cultivars/volunteer seedlings), mechanical inoculations, qualitative and quantitative diagnostic assays (ELISA & qPCR) and, in selected cases, comparative transcriptomic profiling. Field experiments include the planting of the target cultivars/selections in an infected area under high inoculum pressure. All the plots are located in the Apulia Region (Italy) in the demarcated infected area, surrounded by X. fastidiosa heavily affected olive groves. A first experimental plot was established in April 2015 with 10 different cultivars, which was extended in 2016 to 49 cultivars, and will be further enlarged in 2017 with the addition of 40 new accessions. Other plots, comprising newly planted or grafted cultivars (over 260 cvs) have been also established, bringing to over 300 the total number of accessions under evaluation. Cvs Leccino and FS-17®, both expressing interesting traits of resistance, have already been identified

    Targeted delivery of photosensitizers: efficacy and selectivity issues revealed by multifunctional ORMOSIL nanovectors in cellular systems

    Get PDF
    PEGylated and non-PEGylated ORMOSIL nanoparticles prepared by microemulsion condensation of vinyltriethoxy-silane (VTES) were investigated in detail for their micro-structure and ability to deliver photoactive agents. With respect to pure silica nanoparticles, organic modification substantially changes the microstructure and the surface properties. This in turn leads to a modulation of both the photophysical properties of embedded photosensitizers and the interaction of the nanoparticles with biological entities such as serum proteins. The flexibility of the synthetic procedure allows the rapid preparation and screening of multifunctional nanosystems for photodynamic therapy (PDT). Selective targeting of model cancer cells was tested by using folate, an integrin specific RGD peptide and anti-EGFR antibodies. Data suggest the interference of the stealth-conferring layer (PEG) with small targeting agents, but not with bulky antibodies. Moreover, we showed that selective photokilling of tumour cells may be limited even in the case of efficient targeting because of intrinsic transport limitations of active cellular uptake mechanisms or suboptimum localization

    Association between polymorphisms of TAS2R16 and susceptibility to colorectal cancer

    Get PDF
    Background: Genetics plays an important role in the susceptibility to sporadic colorectal cancer (CRC). In the last 10 years genome-wide association studies (GWAS) have identified over 40 independent low penetrance polymorphic variants. However, these loci only explain around 1‑4% of CRC heritability, highlighting the dire need of identifying novel risk loci. In this study, we focused our attention on the genetic variability of the TAS2R16 gene, encoding for one of the bitter taste receptors that selectively binds to salicin, a natural antipyretic that resembles aspirin. Given the importance of inflammation in CRC, we tested whether polymorphic variants in this gene could affect the risk of developing this neoplasia hypothesizing a role of TAS2R16 in modulating chronic inflammation within the gut. Methods: We performed an association study using 6 tagging SNPs, (rs860170, rs978739, rs1357949, rs1525489, rs6466849, rs10268496) that cover all TAS2R16 genetic variability. The study was carried out on 1902 CRC cases and 1532 control individuals from four European countries. Results: We did not find any statistically significant association between risk of developing CRC and selected SNPs. However, after stratification by histology (colon vs. rectum) we found that rs1525489 was associated with increased risk of rectal cancer with a (Ptrend of = 0.0071). Conclusions: Our data suggest that polymorphisms within TAS2R16 gene do not have a strong influence on colon cancer susceptibility, but a possible role in rectal cancer should be further evaluated in larger cohorts
    corecore