140 research outputs found

    Electric field control of a quantum spin liquid in weak Mott insulators

    Full text link
    The triangular lattice Hubbard model at strong coupling, whose effective spin model contains both Heisenberg and ring exchange interactions, exhibits a rich phase diagram as the ratio of the hopping tt to onsite Coulomb repulsion UU is tuned. This includes a chiral spin liquid (CSL) phase. Nevertheless, this exotic phase remains challenging to realize experimentally because a given material has a fixed value of t/Ut/U that can difficultly be tuned with external stimuli. One approach to address this problem is applying a DC electric field, which renormalizes the exchange interactions as electrons undergo virtual hopping processes; in addition to creating virtual doubly occupied sites, electrons must overcome electric potential energy differences. Performing a small t/Ut/U expansion to fourth order, we derive the ring exchange model in the presence of an electric field and find that it not only introduces spatial anisotropy but also tends to enhance the ring exchange term compared to the dominant nearest-neighbor Heisenberg interaction. Thus, increasing the electric field serves as a way to increase the importance of the ring exchange at constant t/Ut/U. Through density matrix renormalization group calculations, we compute the ground state phase diagram of the ring exchange model for two different electric field directions. In both cases, we find that the electric field shifts the phase boundary of the CSL towards a smaller ratio of t/Ut/U. Therefore, the electric field can drive a magnetically ordered state into the CSL. This explicit demonstration opens the door to tuning other quantum spin systems into spin liquid phases via the application of an electric field.Comment: 9 + 17 pages, 10 + 13 figure

    Genetically modified mice- Methods, applications and outlook

    Get PDF
    Background & Aim: Transgenic mice, of tengenerated by random integration of foreign genes into the mouse genome or by targeted mutation in a particular gene, have demonstrated to be a very effective tool for studying gene function in living things. In this review article, we discussed on the current methods of generating genetically-modified mice and their related problems and then investigated the new methods developed to overcome these problems. Finally, we discussed future prospects on the gene targeting. Methods & Materials: This is a review article, which has been written after searching Pubmed, Scopus, Google Scholar, Springer, Elsevier and Magiran databases by using keywords of transgenic mice, functional genetics, genetargeting, and homologous recombination. Results: This study dealt with genetic variations in a wide range, differential processing and inactivation of gene-specific isoforms, local and induced genetic changes, Cre/loxP system and some future perspectives. Conclusion: Success rate in genetic modification of mouse genome has increased dramatically, and use of knockout mice has resulted in increased knowledge of human biology and diseases

    Topology and Fragility in Cosmology

    Get PDF
    We introduce the notion of topological fragility and briefly discuss some examples from the literature. An important example of this type of fragility is the way globally anisotropic Bianchi V generalisations of the FLRW k=1k=-1 model result in a radical restriction on the allowed topology of spatial sections, thereby excluding compact cosmological models with negatively curved three-sections with anisotropy. An outcome of this is to exclude chaotic mixing in such models, which may be relevant, given the many recent attempts at employing compact FLRW k=1k=-1 models to produce chaotic mixing in the cosmic microwave background radiation, if the Universe turns out to be globally anisotropic.Comment: 12 pages, LaTex file, to appear in Gen. Rel. Grav. (1998

    Magnetoplasmonic design rules for active magneto-optics

    Full text link
    Light polarization rotators and non-reciprocal optical isolators are essential building blocks in photonics technology. These macroscopic passive devices are commonly based on magneto-optical Faraday and Kerr polarization rotation. Magnetoplasmonics - the combination of magnetism and plasmonics - is a promising route to bring these devices to the nanoscale. We introduce design rules for highly tunable active magnetoplasmonic elements in which we can tailor the amplitude and sign of the Kerr response over a broad spectral range

    Early Universe Dynamics in Semi-Classical Loop Quantum Cosmology

    Full text link
    Within the framework of loop quantum cosmology, there exists a semi-classical regime where spacetime may be approximated in terms of a continuous manifold, but where the standard Friedmann equations of classical Einstein gravity receive non-perturbative quantum corrections. An approximate, analytical approach to studying cosmic dynamics in this regime is developed for both spatially flat and positively-curved isotropic universes sourced by a self-interacting scalar field. In the former case, a direct correspondence between the classical and semi-classical field equations can be established together with a scale factor duality that directly relates different expanding and contracting universes. Some examples of non-singular, bouncing cosmologies are presented together with a scaling, power-law solution.Comment: 14 pages, In Press, JCA

    “For most of us Africans, we don’t just speak”: a qualitative investigation into collaborative heterogeneous PBL group learning

    Get PDF
    Collaborative approaches such as Problem Based Learning (PBL) may provide the opportunity to bring together diverse students but their efficacy in practice and the complications that arise due to the mixed ethnicity needs further investigation. This study explores the key advantages and problems of heterogeneous PBL groups from the students’ and teachers’ opinions. Focus groups were conducted with a stratified sample of second year medical students and their PBL teachers. We found that students working in heterogeneous groupings interact with students with whom they don’t normally interact with, learn a lot more from each other because of their differences in language and academic preparedness and become better prepared for their future professions in multicultural societies. On the other hand we found students segregating in the tutorials along racial lines and that status factors disempowered students and subsequently their productivity. Among the challenges was also that academic and language diversity hindered student learning. In light of these the recommendations were that teachers need special diversity training to deal with heterogeneous groups and the tensions that arise. Attention should be given to create ‘the right mix’ for group learning in diverse student populations. The findings demonstrate that collaborative heterogeneous learning has two sides that need to be balanced. On the positive end we have the ‘ideology’ behind mixing diverse students and on the negative the ‘practice’ behind mixing students. More research is needed to explore these variations and their efficacy in more detail

    Designer Magnetoplasmonics with Nickel Nanoferromagnets

    Get PDF
    We introduce a new perspective on magnetoplasmonics in nickel nanoferromagnets by exploiting the phase tunability of the optical polarizability due to localized surface plasmons and simultaneous magneto-optical activity. We demonstrate how the concerted action of nanoplasmonics and magnetization can manipulate the sign of rotation of the reflected light’s polarization (i.e., to produce Kerr rotation reversal) in ferromagnetic nanomaterials and, further, how this effect can be dynamically controlled and employed to devise conceptually new schemes for biochemosensing. © 2011 American Chemical Society.A.D. and Z.P. acknowledge support from the Swedish Research Council and Swedish Foundation for Strategic Research (Framework program Functional Electromagnetic Metamaterials, project RMA08). J.Å. acknowledges support from the Swedish Research Council, the Swedish Foundation for Strategic Research (Future Research Leader Programme), and the G€oran Gustafsson Foundation. J.Å. is a Royal Swedish Academy of Sciences Research Fellow supported by a grant from the Knut and Alice Wallenberg Foundation. V.B. acknowledges the G€oran Gustafsson Foundation and the Blanceflor Boncompagni-Ludovisi Foundation. P.V. acknowledges funding from the Basque Government through the ETORGAI Program, Project No. ER- 2010/00032 and Program No. PI2009-17, the Spanish Ministry of Science and Education under Projects No. CSD2006-53 and No. MAT2009-07980. J.N. acknowledges funding for the Generalitat de Catalunya and the Spanish Ministry of Science and Education through No. 2009-SGR-1292 and No. MAT2010-20616-C02 projects.Peer Reviewe

    Nonminimal Inflation and the Running Spectral Index

    Full text link
    We study a class of models in which the inflaton is minimally coupled to gravity with a term f(R)\vp^2. We focus in particular on the case when fR2f\sim R^2, the expansion of the scale factor is driven by the usual potential energy, while the rolling of the inflaton is driven by the nonminial coupling. We show that the power spectrum is in general blue, and the problem of getting a running spectral index is eased. However, the inflaton potential must have a large second derivative in order to get a large running.Comment: 9 pages, harvma

    The Autoimmune Manifestations in Patients with Genetic Defects in the B Cell Development and Differentiation Stages

    Get PDF
    Purpose: Primary B cell defects manifesting as predominantly antibody deficiencies result from variable inborn errors of the B cell lineage and their development, including impairments in early bone marrow development, class switch recombination (CSR), or terminal B cell differentiation. In this study, we aimed to investigate autoimmunity in monogenic patients with B cell development and differentiation defects. Methods: Patients with known genetic defects in the B cell development and differentiation were recruited from the Iranian inborn errors of immunity registry. Results: A total of 393 patients with a known genetic defect in the B cell development and differentiation (257 males; 65.4%) with a median age of 12 (6-20) years were enrolled in this study. After categorizing patients, 109 patients had intrinsic B cell defects. More than half of the patients had defects in one of the ATM (85 patients), BTK (76 patients), LRBA (34 patients), and DOCK8 (33 patients) genes. Fifteen patients (3.8%) showed autoimmune complications as their first manifestation. During the course of the disease, autoimmunity was reported in 81 (20.6%) patients at a median age of 4 (2-7) years, among which 65 patients had mixed intrinsic and extrinsic and 16 had intrinsic B cell defects. The comparison between patients with the mentioned four main gene defects showed that the patient group with LRBA defect had a significantly higher frequency of autoimmunity compared to those with other gene defects. Based on the B cell defect stage, 13% of patients with early B cell defect, 17% of patients with CSR defect, and 40% of patients who had terminal B cell defect presented at least one type of autoimmunity. Conclusion: Our results demonstrated that gene mutations involved in human B cell terminal stage development mainly LRBA gene defect have the highest association with autoimmunity
    corecore