119 research outputs found

    Pengaruh Pendekatan Somatic Auditory Visual Intellectual Berbantuan Media Audio Visual Pada Materi Pertumbuhan dan Perkembangan Tumbuhan terhadap Hasil Belajar Siswa Kelas XII SMA

    Get PDF
    Penelitian ini dilatarbelakangi oleh kurang optimalnya proses pembelajaran biologi khususnya pada materi pertumbuhan dan perkembangan tumbuhan, kurang optimalnya penggunaan media khususnya media audio visual untuk menunjang proses pembelajaran sehingga hasil belajar siswa belum maksimal. Penelitian bertujuan untuk mengetahui pengaruh pendekatan SAVI berbantuan media audio visual pada materi pertumbuhan dan perkembangan tumbuhan terhadap hasil belajar siswa kelas XII SMA Negeri 1 Motoling. Metode penelitian yang digunakan adalah metode penelitian eksperimen dengan desain penelitian quasi eksperimental (semu eksperimental). Sampel dalam penelitian ini adalah siswa kelas XII MIPA SMA Negeri 1 Motoling. Kelas XII MIPA-4 sebagai kelompok eksperimen dan kelas XII MIPA-3 sebagai kelompok kontrol. Berdasarkan hasil penelitian didapat bahwa nilai rata-rata post-test kelas ekperimen 84,4 dan nilai rata-rata post-test kelas kontrol 70. Berdasarkan pengujian hipotesis menunjukkan bahwa thitung sebesar 6,388 dengan taraf signifikansi a = 0,05 diperoleh ttabel sebesar 2,011. Perbandingan antara thitung > ttabel (6,388 > 2,011), maka H0 ditolak dan H1 diterima. Sehingga dapat disimpulkan bahwa penerapan pendekatan SAVI (somatic, auditory, visual, intelektual) berbantuan media audio visual pada materi pertumbuhan dan perkembangan tumbuhan berpengaruh terhadap hasil belajar siswa kelas XII SMA Negeri 1 Motoling

    Signal Space Separation Beamformer

    Get PDF
    We have combined Signal Space Separation and beamformers (SSS beamformer). The SSS beamformer was tested by simulation in the presence of simulated brain noise. The SSS beamformer performs at least as well as the conventional beamformer, provided that the expansion order is sufficiently high. For beamformer outputs which depend on power or power difference normalized by the projected noise, the spatial resolution of the SSS beamformer is significantly better than that of the conventional beamformers if the sources are deeper, and about the same as that of the conventional beamformer when the sources are superficial. For beamformer outputs which depend on the ratio of powers, the spatial resolutions of the SSS and conventional beamfomers are the same. The sensor noise covariance matrix in the SSS basis is non-diagonal. The SSS beamformers with diagonalized noise covariance matrix exhibit better spatial resolution than that with non-diagonal noise covariance matrix. The SSS beamformers are computationally more efficient than the conventional beamformers

    Creating a Gold Medal Olympic and Paralympics Health Care Team: A Satisfaction Survey of the Mobile Medical Unit/Polyclinic Team Training for the Vancouver 2010 Winter Games

    Get PDF
    BACKGROUND: The mobile medical unit/polyclinic (MMU/PC) was an essential part of the medical services to support ill or injured Olympic or Paralympics family during the 2010 Olympic and Paralympics winter games. The objective of this study was to survey the satisfaction of the clinical staff that completed the training programs prior to deployment to the MMU. METHODS: Medical personnel who participated in at least one of the four training programs, including (1) week-end sessions; (2) web-based modules; (3) just-in-time training; and (4) daily simulation exercises were invited to participate in a web-based survey and comment on their level of satisfaction with training program. RESULTS: A total of 64 (out of 94 who were invited) physicians, nurses and respiratory therapists completed the survey. All participants reported favorably that the MMU/PC training positively impacted their knowledge, skills and team functions while deployed at the MMU/PC during the 2010 Olympic Games. However, components of the training program were valued differently depending on clinical job title, years of experience, and prior experience in large scale events. Respondents with little or no experience working in large scale events (45%) rated daily simulations as the most valuable component of the training program for strengthening competencies and knowledge in clinical skills for working in large scale events. CONCLUSION: The multi-phase MMU/PC training was found to be beneficial for preparing the medical team for the 2010 Winter Games. In particular this survey demonstrates the effectiveness of simulation training programs on teamwork competencies in ad hoc groups

    Discrimination of Timbre in Early Auditory Responses of the Human Brain

    Get PDF
    The issue of how differences in timbre are represented in the neural response still has not been well addressed, particularly with regard to the relevant brain mechanisms. Here we employ phasing and clipping of tones to produce auditory stimuli differing to describe the multidimensional nature of timbre. We investigated the auditory response and sensory gating as well, using by magnetoencephalography (MEG).Thirty-five healthy subjects without hearing deficit participated in the experiments. Two different or same tones in timbre were presented through conditioning (S1) – testing (S2) paradigm as a pair with an interval of 500 ms. As a result, the magnitudes of auditory M50 and M100 responses were different with timbre in both hemispheres. This result might support that timbre, at least by phasing and clipping, is discriminated in the auditory early processing. The second response in a pair affected by S1 in the consecutive stimuli occurred in M100 of the left hemisphere, whereas both M50 and M100 responses to S2 only in the right hemisphere reflected whether two stimuli in a pair were the same or not. Both M50 and M100 magnitudes were different with the presenting order (S1 vs. S2) for both same and different conditions in the both hemispheres.Our results demonstrate that the auditory response depends on timbre characteristics. Moreover, it was revealed that the auditory sensory gating is determined not by the stimulus that directly evokes the response, but rather by whether or not the two stimuli are identical in timbre

    Reduced auditory steady state responses in autism spectrum disorder

    Get PDF
    Background Auditory steady state responses (ASSRs) are elicited by clicktrains or amplitude-modulated tones, which entrain auditory cortex at their specific modulation rate. Previous research has reported reductions in ASSRs at 40 Hz for autism spectrum disorder (ASD) participants and first-degree relatives of people diagnosed with ASD (Mol Autism. 2011;2:11, Biol Psychiatry. 2007;62:192–197). Methods Using a 1.5 s-long auditory clicktrain stimulus, designed to elicit an ASSR at 40 Hz, this study attempted to replicate and extend these findings. Magnetencephalography (MEG) data were collected from 18 adolescent ASD participants and 18 typically developing controls. Results The ASSR localised to bilateral primary auditory regions. Regions of interest were thus defined in left and right primary auditory cortex (A1). While the transient gamma-band response (tGBR) from 0-0.1 s following presentation of the clicktrain stimulus was not different between groups, for either left or right A1, the ASD group had reduced oscillatory power at 40 Hz from 0.5 to 1.5 s post-stimulus onset, for both left and right A1. Additionally, the ASD group had reduced inter-trial coherence (phase consistency over trials) at 40 Hz from 0.64-0.82 s for right A1 and 1.04-1.22 s for left A1. Limitations In this study, we did not conduct a clinical autism assessment (e.g. the ADOS), and therefore, it remains unclear whether ASSR power and/or ITC are associated with the clinical symptoms of ASD. Conclusion Overall, our results support a specific reduction in ASSR oscillatory power and inter-trial coherence in ASD, rather than a generalised deficit in gamma-band responses. We argue that this could reflect a developmentally relevant reduction in non-linear neural processing

    Sensorimotor semantics on the spot: brain activity dissociates between conceptual categories within 150 ms

    Get PDF
    Although semantic processing has traditionally been associated with brain responses maximal at 350–400 ms, recent studies reported that words of different semantic types elicit topographically distinct brain responses substantially earlier, at 100–200 ms. These earlier responses have, however, been achieved using insufficiently precise source localisation techniques, therefore casting doubt on reported differences in brain generators. Here, we used high-density MEG-EEG recordings in combination with individual MRI images and state-of-the-art source reconstruction techniques to compare localised early activations elicited by words from different semantic categories in different cortical areas. Reliable neurophysiological word-category dissociations emerged bilaterally at ~ 150 ms, at which point action-related words most strongly activated frontocentral motor areas and visual object-words occipitotemporal cortex. These data now show that different cortical areas are activated rapidly by words with different meanings and that aspects of their category-specific semantics is reflected by dissociating neurophysiological sources in motor and visual brain systems

    Somatosensory System Deficits in Schizophrenia Revealed by MEG during a Median-Nerve Oddball Task

    Get PDF
    Although impairments related to somatosensory perception are common in schizophrenia, they have rarely been examined in functional imaging studies. In the present study, magnetoencephalography (MEG) was used to identify neural networks that support attention to somatosensory stimuli in healthy adults and abnormalities in these networks in patient with schizophrenia. A median-nerve oddball task was used to probe attention to somatosensory stimuli, and an advanced, high-resolution MEG source-imaging method was applied to assess activity throughout the brain. In nineteen healthy subjects, attention-related activation was seen in a sensorimotor network involving primary somatosensory (S1), secondary somatosensory (S2), primary motor (M1), pre-motor (PMA), and paracentral lobule (PCL) areas. A frontal–parietal–temporal “attention network”, containing dorsal- and ventral–lateral prefrontal cortex (DLPFC and VLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), superior parietal lobule (SPL), inferior parietal lobule (IPL)/supramarginal gyrus (SMG), and temporal lobe areas, was also activated. Seventeen individuals with schizophrenia showed early attention-related hyperactivations in S1 and M1 but hypo-activation in S1, S2, M1, and PMA at later latency in the sensorimotor network. Within this attention network, hypoactivation was found in SPL, DLPFC, orbitofrontal cortex, and the dorsal aspect of ACC. Hyperactivation was seen in SMG/IPL, frontal pole, and the ventral aspect of ACC in patients. These findings link attention-related somatosensory deficits to dysfunction in both sensorimotor and frontal–parietal–temporal networks in schizophrenia
    corecore