888 research outputs found

    Beef recording guidelines: A synthesis of an ICAR survey

    Get PDF

    Cortical brain activity is influenced by cadence in cyclists

    Get PDF
    The importance of the central nervous system in endurance exercise has not yet been exhaustively investigated because of difficulties in measuring cortical parameters in sport science. During exercise there are a lot of artifacts and perturbations which can affect signal quality of cortical brain activity. The technical developments of surface electroencephalography (EEG) minimize such influences during standardized test conditions on a bicycle ergometer. The aim of this study was to investigate how movement frequency affects cortical brain activity and established physiological parameters during exercise. In cycling peak performance is affected by cadence. The analysis of brain cortical activity might lead to new insights in the relation of power and cadence. In a laboratory study sixteen male, endurance-trained cyclists completed a 60 min endurance exercise on a high-performance bicycle ergometer. Cadence was changed every 10 min (90-120-60-120-60-90 rpm). EEG was used to analyze changes in cortical brain activity. Furthermore, heart rate, blood lactate and rate of perceived exertion (RPE) were measured after each cadence change. The results indicate that heart rate, blood lactate and RPE were higher at 120 rpm compared to 60 rpm. The spectral EEG power increased statistically significantly in the alpha-2 and beta-2 frequency range by changing cadence from 60 to 120 rpm. By lowering the cadence from 120 to 60 rpm the spectral power dropped statistically significantly in all analyzed EEG frequency bands. The data also showed a statistically significant decrease of spectral EEG power in all frequency ranges over time. In conclusion, the analyzed EEG data indicate that cadence should be considered as an independent exercise normative in the training process, because it directly influences metabolic, cardiac and cortical parameters

    Gastropod-derived haemocyte extracellular traps entrap metastrongyloid larval stages of Angiostrongylus vasorum, Aelurostrongylus abstrusus and Troglostrongylus brevior

    Get PDF
    Background: Phagocyte-derived extracellular traps (ETs) were recently demonstrated mainly in vertebrate hosts as an important effector mechanism against invading parasites. In the present study we aimed to characterize gastropod-derived invertebrate extracellular phagocyte trap (InEPT) formation in response to larval stages of important canine and feline metastrongyloid lungworms. Gastropod haemocytes were isolated from the slug species Arion lusitanicus and Limax maximus, and the snail Achatina fulica, and exposed to larval stages of Angiostrongylus vasorum, Aelurostrongylus abstrusus and Troglostrongylus brevior and investigated for gastropod-derived InEPT formation. Results: Phase contrast as well as scanning electron microscopy (SEM) analyses of lungworm larvae-exposed haemocytes revealed ET-like structures to be extruded by haemocytes thereby contacting and ensnaring the parasites. Co-localization studies of haemocyte-derived extracellular DNA with histones and myeloperoxidase in larvae-entrapping structures confirmed classical characteristics of ETs. In vivo exposure of slugs to A. vasorum larvae resulted in InEPTs being extruded from haemocytes in the slug mucous extrapallial space emphasizing the pivotal role of this effector mechanism against invasive larvae. Functional larval entrapment assays demonstrated that almost half of the haemocyte-exposed larvae were contacted or even immobilized by released InEPTs. Overall, as reported for mammalian-derived ETs, different types of InEPTs were here observed, i.e. aggregated, spread and diffused InEPTs. Conclusions: To our knowledge, this study represents the first report on metastrongyloid lungworm-triggered ETosis in gastropods thereby providing evidence of early mollusc host innate immune reactions against invading larvae. These findings will contribute to the better understanding on complex parasite-intermediate host interactions since different gastropod species bear different transmitting capacities for metastrongyloid infections

    Differences in decision-making behavior between elite and amateur team-handball players in a near-game test situation

    Get PDF
    Athletic features distinguishing experts from non-experts in team sports are relevant for performance analyses, talent identification and successful training. In this respect, perceptual-cognitive factors like decision making have been proposed to be important predictor of talent but, however, assessing decision making in team sports remains a challenging endeavor. In particular, it is now known that decisions expressed by verbal reports or micro-movements in the laboratory differ from those actually made in on-field situations in play. To address this point, our study compared elite and amateur players' decision-making behavior in a near-game test environment including sport-specific sensorimotor responses. Team-handball players (N = 44) were asked to respond as quickly as possible to representative, temporally occluded attack sequences in a team-handball specific defense environment on a contact plate system. Specifically, participants had to choose and perform the most appropriate out of four prespecified, defense response actions. The frequency of responses and decision time were used as dependent variables representing decision-making behavior. We found that elite players responded significantly more often with offensive responses (p < 0.05, odds ratios: 2.76-3.00) in left-handed attack sequences. Decision time decreased with increasing visual information, but no expertise effect was found. We suppose that expertise-related knowledge and processing of kinematic information led to distinct decision-making behavior between elite and amateur players, evoked in a domain-specific and near-game test setting. Results also indicate that the quality of a decision might be of higher relevance than the required time to decide. Findings illustrate application opportunities in the context of performance analyses and talent identification processes

    Enhanced activation of an amino-terminally truncated isoform of the voltage-gated proton channel HVCN1 enriched in malignant B cells

    Get PDF
    The final published version can be found here: http://dx.doi.org/10.1073/pnas.1411390111M.C. is the recipient of a Bennett Fellowship from Leukaemia and Lymphoma Research (ref. 12002). M.A.B. is supported by a GlaxoSmithKline Oncology–Biotechnology and Biological Sciences Research Council Collaborative Awards in Science and Engineering PhD studentship. This work was supported by National Institutes of Health Grants GM087507 and GM102336 (to T.E.D.)

    Internal iliac artery ligation in the management of pelvic haemorrhage - a district general hospital experience

    Get PDF
    Haemorrhage from obstetric and gynaecological surgery is a major cause of morbidity and mortality. Various methods have been described to treat women with intractable haemorrhage. Internal iliac artery ligation (IAL) is an underused but potentially very effective technique. We describe four cases where the procedure was used in controlling severe pelvic haemorrhage when other surgical methods had failed
    • …
    corecore