10 research outputs found

    Vaccination with liposome-coupled glypican-3-derived epitope peptide stimulates cytotoxic T lymphocytes and inhibits GPC3-expressing tumor growth in mice

    Get PDF
    AbstractBecause therapeutic manipulation of immunity can induce tumor regression, anti-cancer immunotherapy is considered a promising treatment modality. We previously reported that glypican-3 (GPC3), an oncofetal antigen overexpressed in hepatocellular carcinoma (HCC), is a useful target for cytotoxic T lymphocyte (CTL)-mediated cancer immunotherapy, and we have performed clinical trials using the GPC3-derived peptide vaccine. Although vaccine-induced GPC3-peptide-specific CTLs were often tumor reactive in vitro and were correlated with overall survival, no complete response was observed. In the current study, we synthesized liposome-coupled GPC3-derived CTL epitope peptide (pGPC3-lipsome) and investigated its antitumor potential. Vaccination with pGPC3-liposome induced peptide-specific CTLs at a lower dose than conventional vaccine emulsified in incomplete Freund's adjuvant. Coupling of pGPC3 to liposomes was essential for effective priming of GPC3-specific CTLs. In addition, immunization with pGPC3-liposome inhibited GPC3-expressing tumor growth. Thus, vaccination with tumor-associated antigen-derived epitope peptides coupled to the surfaces of liposomes may be a novel therapeutic strategy for cancer

    Intratumoral peptide injection enhances tumor cell antigenicity recognized by cytotoxic T lymphocytes: a potential option for improvement in antigen-specific cancer immunotherapy

    Get PDF
    Antigen-specific cancer immunotherapy is a promising strategy for improving cancer treatment. Recently, many tumor-associated antigens and their epitopes recognized by cytotoxic T lymphocytes (CTLs) have been identified. However, the density of endogenously presented antigen-derived peptides on tumor cells is generally sparse, resulting in the inability of antigen-specific CTLs to work effectively. We hypothesize that increasing the density of an antigen-derived peptide would enhance antigen-specific cancer immunotherapy. Here, we demonstrated that intratumoral peptide injection leads to additional peptide loading onto major histocompatibility complex class I molecules of tumor cells, enhancing tumor cell recognition by antigen-specific CTLs. In in vitro studies, human leukocyte antigen (HLA)-A*02:01-restricted glypican-3(144-152) (FVGEFFTDV) and cytomegalovirus(495-503) (NLVPMVATV) peptide-specific CTLs showed strong activity against all peptide-pulsed cell lines, regardless of whether the tumor cells expressed the antigen. In in vivo studies using immunodeficient mice, glypican-3(144-152) and cytomegalovirus(495-503) peptides injected into a solid mass were loaded onto HLA class I molecules of tumor cells. In a peptide vaccine model and an adoptive cell transfer model using C57BL/6 mice, intratumoral injection of ovalbumin(257-264) peptide (SIINFEKL) was effective for tumor growth inhibition and survival against ovalbumin-negative tumors without adverse reactions. Moreover, we demonstrated an antigen-spreading effect that occurred after intratumoral peptide injection. Intratumoral peptide injection enhances tumor cell antigenicity and may be a useful option for improvement in antigen-specific cancer immunotherapy against solid tumors

    Enhancement of antitumor effect by peptide vaccine therapy in combination with anti-CD4 antibody: Study in a murine model

    Get PDF
    Purpose: The clinical efficacy of cancer peptide vaccine therapy is insufficient. To enhance the anti-tumor effect of peptide vaccine therapy, we combined this therapy with an anti-CD4 mAb (GK1.5), which is known to deplete CD4+ cells, including regulatory T cells (Tregs). Methods: To determine the treatment schedule, the number of lymphocyte subsets in the peripheral blood of mice was traced by flow cytometry after administration of anti-CD4 mAb. The ovalbumin (OVA)257–264 peptide vaccine was injected intradermally and anti-CD4 mAb was administered intraperitoneally into C57BL/6 mice at different schedules. We evaluated the enhancement of OVA peptide-specific cytotoxic T lymphocyte (CTL) induction in the combination therapy using the ELISPOT assay, CD107a assay, and cytokine assay. We then examined the in vivo metastasis inhibitory effect by OVA peptide vaccine therapy in combination with anti-CD4 mAb against OVA-expressing thymoma (EG7) in a murine liver metastatic model. Results: We showed that peptide-specific CTL induction was enhanced by the peptide vaccine in combination with anti-CD4 mAb and that the optimized treatment schedule had the strongest induction effect of peptide-specific CTLs using an IFN-γ ELISPOT assay. We also confirmed that the CD107a+ cells secreted perforin and granzyme B and the amount of IL-2 and TNF produced by these CTLs increased when the peptide vaccine was combined with anti-CD4 mAb. Furthermore, metastasis was inhibited by peptide vaccines in combination with anti-CD4 mAb compared to peptide vaccine alone in a murine liver metastatic model. Conclusion: The use of anti-CD4 mAb in combination with the OVA peptide vaccine therapy increased the number of peptide-specific CTLs and showed a higher therapeutic effect against OVA-expressing tumors. The combination with anti-CD4 mAb may provide a new cancer vaccine strategy

    Cellular Adjuvant Properties, Direct Cytotoxicity of Re-differentiated Vα24 Invariant NKT-like Cells from Human Induced Pluripotent Stem Cells.

    Get PDF
    ヒトiPS細胞から、免疫機能を活性化させる細胞の作製に成功. 京都大学プレスリリース. 2016-03-24.Vα24 invariant natural killer T (iNKT) cells are a subset of T lymphocytes implicated in the regulation of broad immune responses. They recognize lipid antigens presented by CD1d on antigen-presenting cells and induce both innate and adaptive immune responses, which enhance effective immunity against cancer. Conversely, reduced iNKT cell numbers and function have been observed in many patients with cancer. To recover these numbers, we reprogrammed human iNKT cells to pluripotency and then re-differentiated them into regenerated iNKT cells in vitro through an IL-7/IL-15-based optimized cytokine combination. The re-differentiated iNKT cells showed proliferation and IFN-γ production in response to α-galactosylceramide, induced dendritic cell maturation and downstream activation of both cytotoxic T lymphocytes and NK cells, and exhibited NKG2D- and DNAM-1-mediated NK cell-like cytotoxicity against cancer cell lines. The immunological features of re-differentiated iNKT cells and their unlimited availability from induced pluripotent stem cells offer a potentially effective immunotherapy against cancer

    Improved safety of induced pluripotent stem cell-derived antigen-presenting cell-based cancer immunotherapy

    No full text
    The tumorigenicity and toxicity of induced pluripotent stem cells (iPSCs) and their derivatives are major safety concerns in their clinical application. Recently, we developed granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing proliferating myeloid cells (GM-pMCs) from mouse iPSCs as a source of unlimited antigen-presenting cells for use in cancer immunotherapy. As GM-pMCs are generated by introducing c-Myc and Csf2 into iPSC-derived MCs and are dependent on self-produced GM-CSF for proliferation, methods to control their proliferation after administration should be introduced to improve safety. In this study, we compared the efficacy of two promising suicide gene systems, herpes simplex virus-thymidine kinase (HSV-TK)/ganciclovir (GCV) and inducible caspase-9 (iCasp9)/AP1903, for safeguarding GM-pMCs in cancer immunotherapy. The expression of HSV-TK or iCasp9 did not impair the fundamental properties of GM-pMCs. Both of these suicide gene-expressing cells selectively underwent apoptosis after treatment with the corresponding apoptosis-inducing drug, and they were promptly eliminated in vivo. iCasp9/AP1903 induced apoptosis more efficiently than HSV-TK/GCV. Furthermore, high concentrations of GCV were toxic to cells not expressing HSV-TK, whereas AP1903 was bioinert. These results suggest that iCasp9/AP1903 is superior to HSV-TK/GCV in terms of both safety and efficacy when controlling the fate of GM-pMCs after priming antitumor immunity
    corecore