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ABSTRACT

Purpose: The clinical efficacy of cancer peptide vaccine therapy is insufficient. To enhance the anti-tumor
effect of peptide vaccine therapy, we combined this therapy with an anti-CD4 mAb (GK1.5), which is
known to deplete CD4™* cells, including regulatory T cells (Tregs).
Methods: To determine the treatment schedule, the number of lymphocyte subsets in the peripheral
blood of mice was traced by flow cytometry after administration of anti-CD4 mAb. The ovalbumin
(OVA)257_264 peptide vaccine was injected intradermally and anti-CD4 mAb was administered in-
traperitoneally into C57BL/6 mice at different schedules. We evaluated the enhancement of OVA peptide-
specific cytotoxic T lymphocyte (CTL) induction in the combination therapy using the ELISPOT assay,
CD107a assay, and cytokine assay. We then examined the in vivo metastasis inhibitory effect by OVA
peptide vaccine therapy in combination with anti-CD4 mAb against OVA-expressing thymoma (EG7) in a
murine liver metastatic model.
Results: We showed that peptide-specific CTL induction was enhanced by the peptide vaccine in com-
bination with anti-CD4 mAb and that the optimized treatment schedule had the strongest induction
effect of peptide-specific CTLs using an IFN-y ELISPOT assay. We also confirmed that the CD107a™ cells
secreted perforin and granzyme B and the amount of IL-2 and TNF produced by these CTLs increased
when the peptide vaccine was combined with anti-CD4 mAb. Furthermore, metastasis was inhibited by
peptide vaccines in combination with anti-CD4 mAb compared to peptide vaccine alone in a murine liver
metastatic model.
Conclusion: The use of anti-CD4 mAb in combination with the OVA peptide vaccine therapy increased the
number of peptide-specific CTLs and showed a higher therapeutic effect against OVA-expressing tumors.
The combination with anti-CD4 mAb may provide a new cancer vaccine strategy.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

while maintaining the quality of life (QOL) of patients and is ex-
pected to prevent recurrence. We previously reported that glypican-

Cancer peptide vaccine therapy can be used to prolong survival 3 (GPC3) was a cancer specific antigen [1-3] and identified GPC3-

derived peptides capable of inducing peptide-specific cytotoxic T
cells (CTLs) [4-6]. A variety of clinical trials of GPC3 peptide vaccine

Abbreviations: QOL, quality of life; GPC3, glypican-3; CTL, cytotoxic T lymphocyte;
HCC, hepatocellular carcinoma; PD-1, programmed death-1; Treg, regulatory T cell;
mAb, monoclonal antibody; TGF-f, transforming growth factor-pI; DC, dendritic
cell; OVA, ovalbumin; IFN-y, interferon-y; ELISPOT assay, enzyme-linked im-
munospot assay; MHC, major histocompatibility complex; FITC, fluorescein iso-
thiocyanate; PE, phycoerythrin; FOXP3, forkhead box P3; 7-AAD, 7-amino-actino-
mycin D; IL-2, interleukine-2; TNF, tumor necrosis factor
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therapy have been performed in hepatocellular carcinoma (HCC)
[7-9] and ovarian clear cell carcinoma [10]. We confirmed the safety
and immunological efficacy of the vaccine and showed the potential
to induce a clinical effect in some patients [7,8,10]. However, the
clinical efficacy of cancer peptide vaccine therapy remains in-
sufficient. Therefore, we are attempting to develop effective en-
hancement methods for peptide vaccine therapy such as in-
tratumoral peptide injection [11] and combination therapy with a
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peptide vaccine and anti-programmed death-1 blocking antibody
(alphaPD-1 Ab) [12]. Moreover, we believe that it is necessary to
develop potent enhancement methods for peptide vaccine therapy.

Several groups have suggested that depletion of CD4* cells re-
sults in strong antitumor effects in tumor-bearing mouse models
because of the enhancement of CTL responses. den Boer et al. re-
ported that depletion of CD4* cells results remarkably increased
the number and systemic spread of tumor-specific CD8™* T cells as
well as tumor eradication and enhanced survival [13]. Chamoto
et al. indicated that combination treatment of carcinoma-bearing
mice with regulatory T cell (Treg)-depletion therapy and a Treg-
recovery blockade using anti-CD25 monoclonal antibody (mAb) and
anti-transforming growth factor-f (anti-TGF-f) mAb was an effi-
cient strategy for inducing strong antitumor immunity and com-
plete rejection of the tumor [14]. Ueha et al. determined that
combination treatment with anti-CD4 mAb and immune check-
point mAbs, particularly anti-PD-1 or anti-PD-L1 mAbs, synergisti-
cally suppressed tumor growth and greatly prolonged survival [15].

To enhance the anti-tumor effect of peptide vaccine therapy,
we included an anti-CD4 mAb (GK1.5). First, we tracked the
changes in the number of each lymphocyte subset in mice per-
ipheral blood by flow cytometry after administration of anti-CD4
mADb in order to determine the best treatment schedule. The en-
hancement of ovalbumin (OVA) peptide-specific cytotoxic T lym-
phocyte (CTL) induction in the combination therapy was con-
firmed using an interferon-y (IFN-y) enzyme-linked immunospot
assay (ELISPOT assay), CD107a assay, and cytokine assay. Finally,
using a murine liver metastatic model, we observed the burden of
metastasis was suppressed by the peptide vaccines in combination
with anti-CD4 mAb.

2. Materials and method
2.1. Mice

C57BL/6 mice were purchased from Charles River Laboratories Ja-
pan (Yokohama, Japan). Mice were maintained under the institutional
guidelines set by the Animal Research committee of the National
Cancer Center Hospital East. Mice were housed under specific-pa-
thogen-free conditions with a 12-h light cycle and food and water ad
libitum. Six-to-eight-week-old mice were used in all experiments.

2.2. Cell line

RMA-S cell lines, which have H2-K® and -D® as major histo-
compatibility complex (MHC) class I epitopes, were maintained in
our laboratory. RMA-S is an antigen processing-defective cell line;
the cells cannot present endogenous antigens with MHC class |
epitopes [16]. EL4 and EG7 were maintained in our laboratory. EG7
expresses OVA protein as a model tumor antigen because the full-
length OVA gene had been transformed into EL4. EL4 was used as a
control target of EG7. B16 and MO4 were provided by the Cell
Resource Center for Biomedical Research Institute of Development,
Aging, and Cancer Tohoku University (Sendai, Japan). MO4 ex-
pressed OVA protein as a model tumor antigen. B16 was used as a
control target of MO4. These cells were maintained in vitro in RPMI
1640 supplemented with 10% fetal bovine serum.

2.3. Murine blood sampling

From the tip of the tail vein, 100 uL peripheral blood was collected.
The samples were analyzed using a flow cytometer after hemolysis.

2.4. Monoclonal antibodies and chemical reagents

The following mAbs were purchased from BioLegend (San
Diego, CA, USA): fluorescein isothiocyanate (FITC)-conjugated Ar-
menian hamster anti-mouse CD3¢e mAb (145-2C11), phycoerythrin
(PE)-labeled rat anti-mouse CD8x mAb (53-6.7), PE/Cy7-labeled
rat anti-mouse CD4 mAb (RM4-5), APC-labeled rat anti-mouse
CD25 mAb (3C7), APC-labeled rat anti-mouse CD107a (LAMP-1)
mAbD (1D4B), APC-labeled rat IgG2a, k isotype control, APC-labeled
rat IgG2b, ¥ isotype control, APC/Cy7-labeled rat anti-mouse CD45
mAb (30-F11), and PE anti-mouse/rat/human forkhead box P3
(FOXP3) flow kit. Additionally, V500 Rat anti-Mouse CD44 mAb
(IM7) and V450 Rat anti-mouse CD62L mAb (MEL-14) were pur-
chased from BD Biosciences (Franklin Lakes, NJ, USA). 7-amino-
actinomycin D (7-AAD) viability dye was purchased from Beckman
Coulter Inc., (Brea, CA, USA). FcR blocking reagent, mouse, was
purchased from Miltenyi Biotec (Bergisch Gladbach, Germany).

2.5. Flow Cytometry (FCM)

The FCM data were acquired using the FACSCanto II system (BD
Biosciences) and analyzed using the Flow-Jo software (Tree Star,
Ashland, OR, USA).

2.6. Administration of monoclonal antibody

GK1.5, a rat anti mouse CD4 mAb and LTF-2, a rat isotype
control IgG2b were purchased from Bio X Cell. Mice received in-
traperitoneal injection of 5 mg/kg GK1.5 or LTF-2 as the isotype
control on day 0.

2.7. Detection of CD4* CD25" FOXP3™* cells after administration of
anti-CD4 mAb in EG7-bearing mice

EG7 was implanted subcutaneously in the right flank of mice.
Anti-CD4 mAb was administered intraperitoneally into the EG7-
bearing mice. The mice were analyzed using flow cytometry on
day 1 after administration of anti-CD4 mAb. PE anti-mouse/rat/
human FOXP3 Flow Kit was used for FOXP3 intracellular staining
according to the manufacturer’s instructions.

2.8. Peptide vaccine

H-2KP-restricted OVAss7-264 (SIINFEKL) was purchased from
AnaSpec, Inc. (Fremont, CA, USA). OVA peptide vaccine consisted of
peptide:7% NaHCOs:incomplete Freund's adjuvant (IFA)=1:9:10.
Mice were injected intradermally at the base of the tail with the
OVA peptide vaccine.

2.9. IEN-y ELISPOT assay

Effector cells were cocultured with each cancer cell line as a
target cell at the indicated effector/target (E/T) ratio. AN IFN-g
ELISPOT assay was carried out as previously described [17].

2.10. CD107a assay

Effector cells were isolated using mouse CD8 microbeads
(Miltenyi Biotec) from peripheral blood. The CD8* cells were in-
cubated with cancer cell lines for 3.5 h at 37 °C. APC-conjugated
CD107a mADb or isotype control rat IgG2a mAb were incubated in
the mixture during the incubation period; after incubation, the
cells were stained with additional PE-conjugated anti-CD8 mAb,
FITC-conjugated anti-CD3emAb, and 7-AAD Viability Dye and
analyzed using FACSCanto II system and Flow-Jo software.
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Fig. 1. Number of lymphocyte subsets after administration of anti-CD4 mAb. (A) Representative flow cytometry profiles of CD4* T cells in peripheral blood on days 0, 1, and
24 after administration of anti-CD4 mAb. (B) Changes in CD4* T cell counts in the peripheral blood after administration of anti-CD4 mAb (GK1.5) (n=3). (C) Changes in CD8 "
T cell counts in peripheral blood after administration of anti-CD4 mAb (GK1.5) (n=3). (D) Representative flow cytometry profiles of CD4" CD25" FOXP3™" cells in sple-
nocytes of EG7-bearing mice on day 1 after administration of anti-CD4 mAb. (E) Statistical analysis of (D) (n=3).**P < 0.01, differences are statistically significant between the
two values.
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2.11. Cytokine assay

Supernatants of the IFN-y ELISPOT assay and CD107a assay were
collected and interleukine-2 (IL-2) and tumor necrosis factor (TNF)
were measured using a Cytometric Bead Array (BD Bioscience) ac-
cording to the manufacturer's instructions. Samples were analyzed
using a FACSCanto II system and the FCAP Array Software 3.0 (BD
Bioscience).

2.12. Murine liver metastatic model

A mouse model of liver metastasis was developed by injecting
tumor cells into the spleen. We obtained viable single-cell sus-
pensions of subcutaneous tumor cells using a gentleMACS Octo
Dissociator with Heaters (Miltenyi Biotec). The single-cell sus-
pensions were injected into the spleen. Mice were anesthetized
using isoflurane vaporizer. A small incision was made in the left
flank to reveal the spleen. A total of 1 x 10° cells/100 pL of EG7 was
injected into the spleen using a 27-gauge needle and the incision
was stapled. The spleen weight and the major axis of splenic tu-
mors were estimated as indicators of splenic tumors. The liver
weight was estimated as an indicator of hepatic tumors because
the number of metastases in the liver could not be counted.

2.13. Immunohistochemical analysis

Immunohistochemical analysis of frozen tissue sections was
done as described previously [18] using mAb specific to CD4 (L3T4;
BD Pharmingen, San Diego, CA) or CD8(53-6.7; BD Pharmingen).
Stained samples were subjected to microscopic analysis on a mi-
croscope (EX51 Olympus, Tokyo, Japan).

2.14. Statistical analysis

All data are presented as the mean + SD. Student's t test for
comparison of means was used to compare groups. P values less
than 0.05 were considered to be statistically significant.

3. Results

3.1. Changes in the number of each lymphocyte subset after anti-CD4
mAb administration

To determine the treatment schedule, the number of each
lymphocyte subset in the peripheral blood of mice was traced after
administration of anti-CD4 mAb using flow cytometry. The subsets
of CD4™" T cells were evaluated on day 0, 1, and 24 (Fig. 1A). CD4™*
T cell counts were dramatically reduced in mice peripheral blood
by the first day after anti-CD4 mAb administration (Fig. 1A and B).
Subsequently, CD4™" T cell count gradually increased, recovering to
50% at 24 days after anti-CD4 mAb administration (Fig. 1B). In
contrast, CD8™* T cell number did not change after anti-CD4 mAb
administration (Fig. 1C). We determined that CD4*" CD25%
FOXP3* cells disappeared in the splenocytes of EG7-bearing mice
on day 1 after anti-CD4 mAb administration. The number of CD4*
CD25* FOXP3™ cells in spleen of EG7-bearing mice on day 1 after
administration of anti-CD4 mAb significantly decreased compared
with the untreated group. As CD4* T cells, including Tregs, had
nearly disappeared, we administered the OVA peptide vaccine one
day after anti-CD4 mAb administration (Fig. 1D and E).

3.2. Effect of peptide vaccine therapy was enhanced in combination
with anti-CD4 mAb

To evaluate the enhancement of OVA peptide-specific CTL

induction in the combination therapy, we compared with the
schedule I of OVA peptide vaccine alone, the schedule II of com-
bination treatment starting from anti-CD4 mAb administration,
and the schedule III of combination treatment starting from OVA
peptide vaccination using the IFN-y ELISPOT assay (Fig. 2A). We
then determined that the increase in OVA-specific CTL induction
by OVA peptide vaccine in combination with anti-CD4 mAb was
higher than that obtained using OVA peptide vaccine alone (Fig. 2B
and C). Next, we compared the two combination schedules with
anti-CD4 mAb and OVA peptide vaccine (schedules II and III). OVA-
specific CTL induction by schedules II and Il showed no significant
differences. But the mean value of spot number in schedules III
was higher than that of spot number in schedules II. From this, we
decided to adopt schedules Il in subsequent experiments.

3.3. Multi-functionality of peptide-specific CTLs induced by peptide
vaccine therapy in combination with anti-CD4 mAb

To determine the multi-function of peptide-specific CTL by
combination therapy, we performed a CD107a assay on day 13 and
IFN-y ELISPOT assay on day14 after priming of the OVA peptide
vaccine using schedule III of Fig. 2A (Fig. 3A). Perforin and granzyme
secretion from CD107a™ cells increased and the production of IL-2
and TNF from these CTLs increased following combined treatment
with anti-CD4 mAb and OVA peptide vaccines (Fig. 3B and D). The
phenotype of these CD8* CD107a* cells were CD44 high CD62L
low effector/memory and that of CD8+ CD107a cells were included
in naive, central/memory, effector/memory (Fig. 3C). The increase in
OVA-specific CTL induction by OVA peptide vaccine in combination
with anti-CD4 mAb was detected using an IFN-y ELISPOT assay, and
the production of IL-2 and TNF from these CTLs was detected in the
combination schedule (Fig. 3E and F). The results of the IFN-y ELI-
SPOT assay, CD107a upregulation assay, and cytokine assay in-
dicated that the depletion of CD4 ™" T cells enhanced the function of
CD8* T cells in the murine peripheral blood and spleen.

3.4. Metastasis was inhibited by peptide vaccine therapy in combi-
nation with anti-CD4 mAb

We evaluated whether the number of metastasis was sup-
pressed by the peptide vaccines in combination with anti-CD4 mAb
in the murine liver metastatic model. The treatments of schedule III
(Fig. 2A) were performed before and after tumor implantation
(Fig. 4A). The spleen weight and liver weight of the combination
group were significantly lighter than those of the untreated group
and group of OVA peptide alone. However, the spleen weight and
liver weight of the combination group showed no significant dif-
ference from those in the group treated with anti-CD4 mAb alone.
The major axis of splenic tumors following combination therapy
was significantly shorter than that for the other groups (Fig. 4C).

3.5. The increase of the infiltration of CD8™" CTL into the liver me-
tastasis and the decrease of CD4™ T cells in the liver after the ad-
ministration of anti-CD4 mAb

CD8™" T cells infiltration in the liver metastatic tumors was
higher in the combination therapy group than in OVA peptide
vaccine alone and untreated group (Fig. 5A). We could not evaluate
CD4™* T cells infiltration into the liver metastatic tumors, because
EG7 cells were expressing CD4 on the cell surfaces in vivo un-
expectedly. But CD4™" T cells infiltration in liver surrounding EG7
tumor was fewer in anti-CD4 mAb treatment group (anti-CD4
mAb alone, combination OVA peptide vaccine and anti-CD4 mAb)
than in no anti-CD4 mAb treatment group (no treatment, OVA
peptide vaccine alone) (Fig. 5B).
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4. Discussion

The aim of this study was to enhance the anti-tumor effect of
peptide vaccine therapy by combination with anti-CD4 mAD in a
mouse model. In this study, we examined the enhancement of the
metastasis inhibitory effect resulting from the use of peptide
vaccines in combination with anti-CD4 mAb in a murine liver
metastatic model. In this model, CD4 ™" cells, including Tregs, in-
terfere with CTL induction or its infiltration into the tumor.

Ueha et al. found that anti-CD4 mAb treatment enhanced an-
titumor CD8* T cell responses and induced a shift toward type I
immunity within the tumor [15]. The immune response is regu-
lated by the Th1/Th2 cytokine balance [19,20]. Nagai et al. sug-
gested that the depletion of CD4 ™" T cells may result in elimination
of Th2 cells despite the abrogation of Th1 cells and induce further
activation of CD8* T cells [21]. We also found that IFN-y-induced
OVA-specific CTL induction increased in the spleen by OVA peptide
vaccine in combination with anti-CD4 mAb based on an IFN-y
ELISPOT assay; the production of IL-2 and TNF from these CTLs in
the peripheral blood and spleen following the combination ther-
apy were determined using a cytokine assay (Fig. 3C). The deple-
tion of CD4* T cells induced a shift toward type I immunity in the
peripheral blood and spleen, which led to enhancement of the
metastasis inhibitory effect by the activation of CD8" T cells fol-
lowing combination therapy.

Filipazzi et al. reported that the activation of helper CD4* T
cells was necessary for the induction of killer CD8* T cells [22,23].
Based on the results of the previous study, it was not clear whe-
ther helper CD4% T cells were required for tumor immunity.
However, CD4* T cells may be required for the priming of peptide
vaccines, as the frequency of IFN-y-induced peptide-specific CTLs
increased in the murine spleen for schedule III to a greater extent
than that in the case of schedule Il administered with anti-CD4
mAb (Fig. 2C). Additional studies are required to confirm this.

The efficacy of immunotherapy in mouse models depends on
the tumor type. EG7 cells used in this study express CD4 on the
cell surface in vivo, but not in vitro [24]. However, at the beginning
of this study, EG7 cells in vivo were found to express CD4 on the
cell surface, as shown by immunohistochemical staining of CD4
(data not shown). The anti-CD4 mAb (GK1.5) directly killed EG7
cells in vivo through complement-dependent cytotoxicity [25],
which was considered to be influenced by the result of the murine
liver metastatic model. However, we observed metastasis sup-
pression effects following combination therapy in the mouse
model using CD4-negative OVA-expressing B16 melanoma, MO4
cells (data not shown). Other tumor cells should be tested in future
studies.

In this study, we used OVA as a model antigen, as OVA is
thought to be highly immunogenic compared to cancer antigens.
We are currently examining targeted cancer antigens such as GPC3
before conducting clinical trials involving combination therapy of
the peptide vaccine and anti-CD4 mAb.

The depletion of CD4™" cells may have adverse effects. No ser-
ious adverse effects were detected in our mouse model. In addi-
tion, no severe adverse effects were observed during phase II
clinical trials for T-cell malignancy with long-term administration
of humanized anti-CD4 mAbs [26,27]. Autoimmune diseases may
occur as result of the continuous reduction of CD4™* cells. How-
ever, the depletion of CD4* cells in this study was transient, not
continuous. Although this change was transient, the risk of in-
fectious diseases was increased. Therefore, careful observation of
patients after administration of anti-CD4 mAb is required in clin-
ical trials.

Surgery and radiation therapy show excellent local control of
tumors, but they are inferior to chemotherapy and im-
munotherapy for systemic control. In particular, although

extremely high-quality radiation therapy such as intensity-
modulated radiation therapy or ion radiotherapy has been
achieved, radiation enhances metastases under conditions of non-
curative doses [28]. Our strategy can suppress the progression of
cancer in combination with surgery or radiation therapy to sys-
temically control cancer metastasis and recurrence.

In conclusion, we demonstrated the enhancement of metastasis
inhibitory effects following administration of peptide vaccines in
combination with anti-CD4 mAb in a murine liver metastatic
model. Our results will contribute to the development of cancer
treatment.
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