7 research outputs found

    AIMSurv: First pan-European harmonized surveillance of Aedes invasive mosquito species of relevance for human vector-borne diseases

    Get PDF
    Human and animal vector-borne diseases, particularly mosquito-borne diseases, are emerging or re-emerging worldwide. Six Aedes invasive mosquito (AIM) species were introduced to Europe since the 1970s: Aedes aegypti, Ae. albopictus, Ae. japonicus, Ae. koreicus, Ae. atropalpus and Ae. triseriatus. Here, we report the results of AIMSurv2020, the first pan-European surveillance effort for AIMs. Implemented by 42 volunteer teams from 24 countries. And presented in the form of a dataset named “AIMSurv Aedes Invasive Mosquito species harmonized surveillance in Europe. AIM-COST Action. Project ID: CA17108”. AIMSurv2020 harmonizes field surveillance methodologies for sampling different AIMs life stages, frequency and minimum length of sampling period, and data reporting. Data include minimum requirements for sample types and recommended requirements for those teams with more resources. Data are published as a Darwin Core archive in the Global Biodiversity Information Facility- Spain, comprising a core file with 19,130 records (EventID) and an occurrences file with 19,743 records (OccurrenceID). AIM species recorded in AIMSurv2020 were Ae. albopictus, Ae. japonicus and Ae. koreicus, as well as native mosquito species

    The first record of the invasive mosquito species Aedes albopictus in Chişinӑu, Republic of Moldova, 2020

    No full text
    BACKGROUND: In Europe, Aedes albopictus is an important vector of chikungunya virus and Dirofilaria nematodes and has been involved in local autochthonous circulation of dengue and Zika viruses. Due to the ongoing spread, targeted field surveillance at potential points of entry of invasive Aedes mosquitoes was initiated by the Republic of Moldova in 2020 as part of the transboundary “Invasive Aedes Mosquitoes COST-Action project.” METHODS: In 2020, ovitraps were positioned at each of three locations: the border crossing to Romania in Leuşeni (Hancesti region), Chişinӑu International Airport and Chişinӑu Botanical Garden. RESULTS: A total of 188 Aedes spp. eggs were collected at the Chişinӑu International Airport between August and September 2020. Twenty-three adults reared in the laboratory were identified morphologically as Ae. albopictus (Skuse, 1895), and 12 selected specimens were confirmed by molecular barcoding of the cytochrome oxidase subunit I gene region. In addition, one adult Ae. albopictus female at the same site was caught with a manual aspirator. CONCLUSIONS: This is the first documented report of Ae. albopictus in the Republic of Moldova. The presence of immature and adult stages indicates the local reproduction of the species in the country. Therefore, it is crucial to extend and strengthen surveillance of the invasive Aedes mosquitoes to prevent Ae. albopictus and other exotic mosquito species from becoming established in the Republic of Moldova

    Plangebied Nieuwbouw Dr. Nassau College, Stokleggingslaan 17 te Gieten

    No full text
    De grondsporen bestaan uit een hutkom, kuilen , paalkuilen en greppels. Uit de verspreid liggende paalkuilen zijn geen gebouwen te reconstrueren. Het onderzoeksgebied ligt vermoedelijk in de periferie van een nederzetting waarvan de kern, met huisplattegronden, waterputten, afvalkuilen e.d., ten zuiden van het onderzoeksgebied verwacht wordt.Binnen het onderzoeksgebied zijn aanwijzingen gevonden voor bewoning in de Midden IJzertijd en de Vroege Middeleeuwen

    Surveillance of Arthropod-Borne Viruses and Their Vectors in the Mediterranean and Black Sea Regions Within the MediLabSecure Network.

    Get PDF
    International audiencePurpose of ReviewArboviruses, viruses transmitted by arthropods such as mosquitoes, ticks, sandflies, and fleas are a significant threat to public health because of their epidemic and zoonotic potential. The geographical distribution of mosquito-borne diseases such as West Nile (WN), Rift Valley fever (RVF), Dengue, Chikungunya, and Zika has expanded over the last decades. Countries of the Mediterranean and Black Sea regions are not spared. Outbreaks of WN are repeatedly reported in the Mediterranean basin. Human cases of RVF were reported at the southern borders of the Maghreb region. For this reason, establishing the basis for the research to understand the potential for the future emergence of these and other arboviruses and their expansion into new geographic areas became a public health priority. In this context, the European network "MediLabSecure" gathering laboratories in 19 non-EU countries from the Mediterranean and Black Sea regions seeks to improve the surveillance (of animals, humans, and vectors) by reinforcing capacity building and harmonizing national surveillance systems to address this important human and veterinary health issue. The aim of this review is to give an exhaustive overview of arboviruses and their vectors in the region.Recent FindingsThe data presented underline the importance of surveillance in the implementation of more adapted control strategies to combat vector-borne diseases. Partner laboratories within the MediLabSecure network present a wide range of infrastructures and have benefited from different training programs.SummaryAlthough reporting of arboviral presence is not carried out in a systematic manner, the expansion of the area where arboviruses are present cannot be disputed. This reinforces the need for increasing surveillance capacity building in this region to prevent future emergences

    Identification of mosquitoes (Diptera: Culicidae): an external quality assessment of medical entomology laboratories in the MediLabSecure Network

    No full text
    Abstract Background Identification of vectors is of prime importance in the field of medical entomology for both operational and research purposes. An external quality assessment of mosquito identification capacities was carried out within the MediLabSecure Network, which is composed of laboratories located in 19 countries close to the European Union around the Mediterranean and Black seas. Methods A set of blind samples consisting of 7 or 8 adult mosquitoes and 4 larvae was given to each participant laboratory. In all, 138 adult mosquitoes and 76 larvae of different species were distributed for genus and species identification. Results All identifications were exclusively morphology based. Overall, 81% of identifications were correct at the genus level, 64% at the species level. The results were highly varied among the 19 participating laboratories. The levels of correct identifications were: 100% (three laboratories), 90–95% (four laboratories), 50–75% (six laboratories) and < 50% (six laboratories). Conclusions This evaluation showed the need to maintain efforts in capacity building and quality control in the field of medical entomology and, more specifically, in the morphological identification of the Culicidae

    Towards harmonisation of entomological surveillance in the Mediterranean area

    Get PDF
    International audienceBackgroundThe Mediterranean Basin is historically a hotspot for trade, transport, and migration. As a result, countries surrounding the Mediterranean Sea share common public health threats. Among them are vector-borne diseases, and in particular, mosquito-borne viral diseases are prime candidates as (re)emerging diseases and are likely to spread across the area. Improving preparedness and response capacities to these threats at the regional level is therefore a major issue.The implementation of entomological surveillance is, in particular, of utmost importance. Guidance in designing entomological surveillance systems is critical, and these systems may pursue different specific objectives depending on the disease.The purpose of the proposed review is to draw up guidelines for designing effective and sustainable entomological surveillance systems in order to improve preparedness and response. However, we make it clear that there is no universal surveillance system, so the thinking behind harmonisation is to define evidence-based standards in order to promote best practises, identify the most appropriate surveillance activities, and optimise the use of resources.Such guidance is aimed at policymakers and diverse stakeholders and is intended to be used as a framework for the implementation of entomological surveillance programmes. It will also be useful to collaborate and share information with health professionals involved in other areas of disease surveillance. Medical entomologists and vector control professionals will be able to refer to this report to advocate for tailored entomological surveillance strategies.The main threats targeted in this review are the vectors of dengue virus, chikungunya virus, Zika virus, West Nile virus, and Rift Valley fever virus. The vectors of all these arboviruses are mosquitoes.MethodsCurrent knowledge on vector surveillance in the Mediterranean area is reviewed. The analysis was carried out by a collaboration of the medical entomology experts in the region, all of whom belong to the MediLabSecure network, which is currently funded by the European Union and represents an international effort encompassing 19 countries in the Mediterranean and Black Sea region.FindingsRobust surveillance systems are required to address the globalisation of emerging arboviruses. The prevention and management of mosquito-borne viral diseases must be addressed in the prism of a One Health strategy that includes entomological surveillance as an integral part of the policy. Entomological surveillance systems should be designed according to the entomological and epidemiological context and must have well-defined objectives in order to effect a tailored and graduated response. We therefore rely on different scenarios according to different entomological and epidemiological contexts and set out detailed objectives of surveillance. The development of multidisciplinary networks involving both academics and public authorities will provide resources to address these health challenges by promoting good practises in surveillance (identification of surveillance aims, design of surveillance systems, data collection, dissemination of surveillance results, evaluation of surveillance activities) and through the sharing of effective knowledge and information. These networks will also contribute to capacity building and stronger collaborations between sectors at both the local and regional levels. Finally, concrete guidance is offered on the vector of the main arbovirus based on the current situation in the area
    corecore