10 research outputs found

    ANTIMICROBIAL POTENTIALS OF SILVER COLLOIDAL (NANORODS) ON CLINICAL ISOLATES IN BAYELSA STATE, NIGERIA

    Get PDF
    Antimicrobial resistance in developing countries has long been an issue of major concern. Nanotechnology has become an eye opener for the intervention on multiple drug resistance organisms. In this study we investigated the antimicrobial potentials of Silver Nitrate (nanorods) solution used in managing infectious diseases, the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the product against microbial isolates were determined using standard microbiological techniques. The mean MIC and MBC of silver nitrate solution on fungi (0.16 μg/ml and 0.29 μg/ml respectively) was significantly lower than that of Gram positive organisms (2.35μg/ml and 2.62μg/ml) and Gram negative organisms (2.05 μg/ml and 2.10 μg/ml). Of all the Gram positive organisms, Staphylococcus spp recorded the lowest mean MICand MBC while in the Gram negative organisms group, E. coli isolates showed the lowest mean MIC and MBC of the silver nitrate solution, though not significantly different from the other isolates. In conclusion, results from this study revealed that Silver Nitrate(nanorods) may have be broad spectrum in activity, but with higher antifungal potentials

    MICROBIAL BURDEN OF SOME HERBAL ANTIMALARIALS MARKETED AT ELELE, RIVERS STATE

    Get PDF
    Herbal antimalarials still remain an alternative to our traditional communities who can not afford orthodox antimalarials. This study was aimed at investigating the microbial quality of six herbal antimalarials using standard microbiological methods. Of the six preparations analyzed, “schnapps”, palm wine and water were the media of preparation; the water base preparations recorded higher microbial load. The mean microbial load was 159.5x105 cfu/ml and 217.4x102cfu/ml in water and alcohol base preparations respectively. The microbial profile of the preparations showed that the schnapps base preparations were predominantly contaminated with Bacillus sp (Aerobic spore bearers) and Mucor spp. The palm wine preparation harboured Bacillus sp, yeasts and Mucor spp while the water base preparations had several isolates such as Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia coli 0157H7, Proteus mirabilis, Enterococcus feacalis, Serratia marcensces, Staph. aureus, Bacillus spp and Mucor spp. Conclusively, this study underlines the public health importance of these preparations given the high burden of such human pathogen as Ecoli O157H7, Ps aeruginosa, Stahp aureus, etc. in the preparations

    The evolving SARS-CoV-2 epidemic in Africa: insights from rapidly expanding genomic surveillance

    Get PDF
    Investment in SARS-CoV-2 sequencing in Africa over the past year has led to a major increase in the number of sequences generated, now exceeding 100,000 genomes, used to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence domestically, and highlight that local sequencing enables faster turnaround time and more regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and shed light on the distinct dispersal dynamics of Variants of Concern, particularly Alpha, Beta, Delta, and Omicron, on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve, while the continent faces many emerging and re-emerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Emergence and spread of two SARS-CoV-2 variants of interest in Nigeria.

    Get PDF
    Identifying the dissemination patterns and impacts of a virus of economic or health importance during a pandemic is crucial, as it informs the public on policies for containment in order to reduce the spread of the virus. In this study, we integrated genomic and travel data to investigate the emergence and spread of the SARS-CoV-2 B.1.1.318 and B.1.525 (Eta) variants of interest in Nigeria and the wider Africa region. By integrating travel data and phylogeographic reconstructions, we find that these two variants that arose during the second wave in Nigeria emerged from within Africa, with the B.1.525 from Nigeria, and then spread to other parts of the world. Data from this study show how regional connectivity of Nigeria drove the spread of these variants of interest to surrounding countries and those connected by air-traffic. Our findings demonstrate the power of genomic analysis when combined with mobility and epidemiological data to identify the drivers of transmission, as bidirectional transmission within and between African nations are grossly underestimated as seen in our import risk index estimates

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Citocinas Th1 e Th2 em crianças com hemoglobinopatias e infecção por malária não complicada

    No full text
    The relative balance between Th1 and Th2 cytokines appears crucial in the outcome of infections. Weassessed the levels of proinflammatory Th1 cytokines, interleukin2 (IL2) and gamma interferon (IFNγ),and anti-inflammatory Th2 cytokines, IL4 and IL10 in homozygous haemoglobin (Hb) AA, SS and heterozygousAS genotyped individuals with uncomplicated P. falciparum malaria in Benin city, Nigeria. Levels of Th1 andTh2 cytokines of 111 children with uncomplicated malaria and 89 healthy controls were determined byEnzyme Linked Immunosorbent Assay. CD4 and CD8 cells were counted using the Dynabeads T4T8Quantification protocol while haematological parameters were estimated using standard haematologicaltechniques. Th1 and Th2 cytokine levels were significantly higher in HbAA, HbAS and HbSS genotypedpatients than their respective healthy controls (PO relativo equilíbrio entre as citocinas Th1 e Th2 parece crucial para o resultado das infecções. Foram avaliados osníveis de citocinas pró-inflamatórias Th1, interleucina 2 (IL2) e interferon gama (IFNγ) e as citocinas antiinflamatóriasTh2, IL4 e IL10 em indivíduos homizigotos para hemoglobina (Hb) AA, SS e heterozigotos AS com malária nãocomplicada por P. falciparum, na cidade de Benin, na Nigéria. Os níveis de citocinas Th1 e Th2 de 111 crianças commalária não complicada e 89 controles saudáveis foram determinados por método imunoenzimático. Células CD4 eCD8 foram contadas utilizando o protocolo T4T8 Dynabeads Quantification, enquanto os parâmetros hematológicosforam estimados através de técnicas hematológicas. Níveis de citocinas Th1 e Th2 foram significativamente maioresem pacientes HbAA, HBAs e HbSS do que os respectivos controles (

    Prevalence of Lassa virus among rodents trapped in three South-South States of Nigeria

    No full text
    Background & objectives: Lassa fever has been endemic in Nigeria since 1969. The rodent Mastomys natalensis has been widely claimed to be the reservoir host of the Lassa virus. This study was designed to investigate the dis- tribution of species of rodents in three states (Edo, Delta and Bayelsa) of Nigeria and to determine the prevalence of Lassa virus amongst trapped rodents in the selected states. Methods: Rodents were trapped during November 2015 to October 2016 from the three states in South-South re- gion of Nigeria. Total RNA was extracted from the blood collected from the trapped rodents. Reverse transcription polymerase chain reaction (RT-PCR) was used to confirm the presence of Lassa virus in the rodents. Results: The results revealed that six species of rodents were predominantly present in these geographical locations. Mus musculus (39.4%) had the highest prevalence, closely followed by Rattus rattus (36.1%), R. fuscipus (20.3%), M. natalensis (2%), Myosoricinae soricidae (1.2%) and R. norvegicus (1%). The overall positivity (carrier rate) of Lassa virus was 1.6% amongst the 1500 rodents caught in the three states. In Edo and Delta States, the RT-PCR results showed presence of Lassa virus in R. rattus, M. musculus and M. natalensis. On the other hand, only M. na- talensis was detected with the virus, amongst the species of rodents caught in Bayelsa State. M. natalensis recorded the highest Lassa virus among rodents trapped in Edo (87%), Delta (50%) and Bayelsa (11%) States respectively. Interpretation & conclusion: The rather low Lassa virus positive among rodents in Bayelsa State of Nigeria may explain the absence of reports of outbreak of Lassa fever over the past 48 yr in the state. The results also confirmed that apart from Mastomys natalensis, other rodents such as Rattus rattus and Mus musculus may also serve as res- ervoirs for Lassa virus. From the findings of this cross-sectional study, it was concluded that a more comprehensive study on rodents as reservoir host, need to be undertaken across the entire states of Nigeria, for better understanding of the epidemiology and endemicity of Lassa fever

    Significance and Roles of Proteus spp. Bacteria in Natural Environments

    No full text

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    No full text
    The past 2 years, during which waves of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants swept the globe, have starkly highlighted health disparities across nations. Tegally et al. show how the coordinated efforts of talented African scientists have in a short time made great contributions to pandemic surveillance and data gathering. Their efforts and initiatives have provided early warning that has likely benefited wealthier countries more than their own. Genomic surveillance identified the emergence of the highly transmissible Beta and Omicron variants and now the appearance of Omicron sublineages in Africa. However, it is imperative that technology transfer for diagnostics and vaccines, as well the logistic wherewithal to produce and deploy them, match the data-gathering effort
    corecore