61 research outputs found

    Quality of work and employment, industrial relations and restructuring in Turkey.

    Get PDF
    Despite the rapid economic growth of recent years, Turkey has not been successful in translating this growth into the creation of sufficient numbers of new jobs. Employment grew by only 1.2% in 2005 and by 1.3% in 2006, increasing slightly to just 1.8% in the third quarter of 2007. The country’s unemployment rate has remained at about 10%– 11% for each year since the start of the economic recovery in 2002. Unemployment is particularly high among young people aged 15–24 years, reaching 19% in recent years

    Productivity: the impact of privatisation and liberalisation in public services.

    Get PDF
    This paper analyses the evolution of labour productivity and its sources in Electricity and Gas, Post and Telecommunication, Inland Transport and Health and Social Work sectors of Austria, Belgium, Germany, Poland, Sweden and the UK in the presence of privatisation and liberalisation process from 1970 to 2004. The results showed that although some degree of labour productivity growth achieved in all sectors and countries, there has also been significant employment decreases except for Health and Social Work sector. Productivity increase/employment decrease trend is even stronger in the privatisation and liberalisation era for most countries. Decomposition of labour productivity shows that higher productivity, to some extent, was gained at the expense of employment decrease. Although there have been productivity increases in both pre- and post-privatisation periods, the contribution of employment decrease to productivity growth turned out to be quite significant in the post-privatisation period. This brings about the necessity to question the presumption that privatisation brings about higher productivity

    An outbreak of highly pathogenic avian influenza (H7n7) in australia and the potential for novel influenza a viruses to emerge

    Get PDF
    In 2020, several geographically isolated farms in Victoria, Australia, experienced an outbreak of highly pathogenic avian influenza (HPAI) virus H7N7 and low pathogenic avian influenza (LPAI) viruses H5N2 and H7N6. Effective containment and control measures ensured the eradication of these viruses but the event culminated in substantial loss of livestock and significant economic impact. The avian HPAI H7N7 virus generally does not infect humans; however, evidence shows the ocular pathway presents a favourable tissue tropism for human infection. Through antigenic drift, mutations in the H7N7 viral genome may increase virulence and pathogenicity in humans. The Victorian outbreak also detected LPAI H7N6 in emus at a commercial farm. Novel influenza A viruses can emerge by mixing different viral strains in a host susceptible to avian and human influenza strains. Studies show that emus are susceptible to infections from a wide range of influenza viral subtypes, including H5N1 and the pandemic H1N1. The emu’s internal organs and tissues express abundant cell surface sialic acid receptors that favour the attachment of avian and human influenza viruses, increasing the potential for internal genetic reassortment and the emergence of novel influenza A viruses. This review summarises the historical context of H7N7 in Australia, considers the potential for increased virulence and pathogenesis through mutations and draws attention to the emu as potentially an unrecognised viral mixing vessel

    Packet arrival analysis in wireless sensor networks

    Get PDF
    Distributed sensor networks have been discussed for more than 30 years, but the vision of Wireless Sensor Networks (WSNs) has been brought into reality only by the rapid advancements in the areas of sensor design, information technologies, and wireless networks that have paved the way for the proliferation of WSNs. The unique characteristics of sensor networks introduce new challenges, amongst which prolonging the sensor lifetime is the most important. WSNs have seen a tremendous growth in various application areas including health care, environmental monitoring, security, and military purposes despite prominent performance and availability challenges. Clustering plays an important role in enhancement of the life span and scalability of the network, in such applications. Although researchers continue to address these grand challenges, the type of distributions for arrivals at the cluster head and intermediary routing nodes is still an interesting area of investigation. Modelling the behaviour of the networks becomes essential for estimating the performance metrics and further lead to decisions for improving the network performance, hence highlighting the importance of identifying the type of inter-arrival distributions at the cluster head. In this paper, we present extensive discussions on the assumptions of exponential distributions in WSNs, and present numerical results based on Q-Q plots for estimating the arrival distributions. The work is further extended to understand the impact of end-to-end delay and its effect on inter-arrival time distributions, based on the type of medium access control used in WSNs. Future work is also presented on the grounds that such comparisons based on simple eye checks are insufficient. Since in many cases such plots may lead to incorrect conclusions, demanding the necessity for validating the types of distributions. Statistical analysis is necessary to estimate and validate the empirical distributions of the arrivals in WSNs

    Does the assumption of exponential arrival distributions in wireless sensor networks hold?

    Get PDF
    Wireless Sensor Networks have seen a tremendous growth in various application areas despite prominent performance and availability challenges. One of the common configurations to prolong the lifetime and deal with the path loss phenomena having a multi-hop set-up with clusters and cluster heads to relay the information. Although researchers continue to address these challenges, the type of distribution for arrivals at the cluster head and intermediary routing nodes is still an interesting area of investigation. The general practice in published works is to compare an empirical exponential arrival distribution of wireless sensor networks with a theoretical exponential distribution in a Q-Q plot diagram. In this paper, we show that such comparisons based on simple eye checks are not sufficient since, in many cases, incorrect conclusions may be drawn from such plots. After estimating the Maximum Likelihood parameters of empirical distributions, we generate theoretical distributions based on the estimated parameters. By conducting Kolmogorov-Smirnov Test Statistics for each generated inter-arrival time distributions, we find out, if it is possible to represent the traffic into the cluster head by using theoretical distribution. Empirical exponential arrival distribution assumption of wireless sensor networks holds only for a few cases. There are both theoretically known such as Gamma, Log-normal and Mixed Log-Normal of arrival distributions and theoretically unknown such as non-Exponential and Mixed cases of arrival in wireless sensor networks. The work is further extended to understand the effect of delay on inter-arrival time distributions based on the type of medium access control used in wireless sensor networks

    Packet Arrival Analysis in Wireless Sensor Networks

    Full text link
    Distributed sensor networks have been discussed for more than 30 years, but the vision of Wireless Sensor Networks (WSNs) has been brought into reality only by the rapid advancements in the areas of sensor design, information technologies, and wireless networks that have paved the way for the proliferation of WSNs. The unique characteristics of sensor networks introduce new challenges, amongst which prolonging the sensor lifetime is the most important. WSNs have seen a tremendous growth in various application areas including health care, environmental monitoring, security, and military purposes despite prominent performance and availability challenges. Clustering plays an important role in enhancement of the life span and scalability of the network, in such applications. Although researchers continue to address these grand challenges, the type of distributions for arrivals at the cluster head and intermediary routing nodes is still an interesting area of investigation. Modelling the behaviour of the networks becomes essential for estimating the performance metrics and further lead to decisions for improving the network performance, hence highlighting the importance of identifying the type of inter-arrival distributions at the cluster head. In this paper, we present extensive discussions on the assumptions of exponential distributions in WSNs, and present numerical results based on Q-Q plots for estimating the arrival distributions. The work is further extended to understand the impact of end-to-end delay and its effect on inter-arrival time distributions, based on the type of medium access control used in WSNs. Future work is also presented on the grounds that such comparisons based on simple eye checks are insufficient. Since in many cases such plots may lead to incorrect conclusions, demanding the necessity for validating the types of distributions. Statistical analysis is necessary to estimate and validate the empirical distributions of the arrivals in WSNs

    Compositional Verification and Optimization of Interactive Markov Chains

    Full text link
    Interactive Markov chains (IMC) are compositional behavioural models extending labelled transition systems and continuous-time Markov chains. We provide a framework and algorithms for compositional verification and optimization of IMC with respect to time-bounded properties. Firstly, we give a specification formalism for IMC. Secondly, given a time-bounded property, an IMC component and the assumption that its unknown environment satisfies a given specification, we synthesize a scheduler for the component optimizing the probability that the property is satisfied in any such environment

    {VeSTA} : a Tool to Verify the Correct Integration of a Component in a Composite Timed System

    No full text
    International audienceVesta is a push-button tool for checking the correct integration of a component in an environment, for component-based timed systems. By correct integration, we mean that the local properties of the component are preserved when this component is merged into an environment. This correctness is checked by means of a so-called divergencesensitive and stability-respecting timed tau-simulation, ensuring the preservation of all linear timed properties expressed in the logical formalism Mitl (Metric Interval Temporal Logic), as well as strong non-zenoness and deadlock-freedom. The development of the tool was guided by the architecture of the Open-Kronos tool. This allows, as additional feature, an easy connection of the models considered in Vesta to the Open- Caesar verification platform, and to the Open-Kronos tool
    • …
    corecore