36 research outputs found

    Optical vortices generated by a PANDA ring resonator for drug trapping and delivery applications

    Get PDF
    We propose a novel drug delivery system (DDS) by using a PANDA ring resonator to form, transmit and receive the microscopic volume by controlling some suitable ring parameters. The optical vortices (gradient optical field/well) can be generated and used to form the trapping tool in the same way as the optical tweezers. The microscopic volume (drug) can be trapped and moved (transported) dynamically within the wavelength router or network. In principle, the trapping force is formed by the combination between the gradient field and scattering photons, which has been reviewed. The advantage of the proposed system is that a transmitter and receiver can be formed within the same system, which is called transceiver, in which the use of such a system for microscopic volume (drug volume) trapping and transportation (delivery) can be realized

    Appropriate biotechnology for Thailand

    No full text

    Nanoscopic volume trapping and transportation using a PANDA ring resonator for drug delivery

    Get PDF
    A novel design of nanoscopic volume transmitter and receiver for drug delivery system using a PANDA ring resonator is proposed. By controlling some suitable parameters, the optical vortices (gradient optical fields/wells) can be generated and used to form the trapping tools in the same way as the optical tweezers. By using the intense optical vortices generated within the PANDA ring resonator, the nanoscopic volumes (drug) can be trapped and moved (transport) dynamically within the wavelength router or network. In principle, the trapping force is formed by the combination between the gradient field and scattering photons, which is reviewed. The advantage of the proposed system is that a transmitter and receiver can be formed within the same system (device), which is called a transceiver, which is available for nanoscopic volume (drug volume) trapping and transportation (delivery)

    Electrocardiogram signal processing algorithm on microcontroller using wavelet transform method

    Get PDF
    The electrocardiogram (ECG) is an important parameter for analyzing the cardiac system. It serves as the primary diagnostic tool for patients with suspected heart disease, guiding appropriate cardiac investigations according to the disease or condition suspected. However, ECG measurements may generate noise, leading to false diagnoses. The wavelet transform is an effective and widely-used technique for eliminating noise. Typically, analysis and generation algorithms are developed on computer and using software built in. This paper presents a noise elimination algorithm based on the wavelet transform method, designed to operate on resource-limited Node microcontroller unit (MCU). An efficiency study was conducted to determine the optimum mother wavelet implementation of the algorithm, and the results showed that, when considering synthetic ECG signals, db4 was the most suitable for eliminating interference by achieving the highest signal to noise ratio (SNR) and correlation coefficient. In addition, this algorithm prototype can analyze ECG signals using the wavelet transform method processed in a microcontroller and is accurate compared to reliable programs. It has the potential to be further developed into a low-cost portable ECG signal measurement tool for use in remote medicine, healthcare facilities in resource-limited areas, education and training, as well as home monitoring for chronic patients

    New wavelength division multiplexing bands generated by using a Gaussian pulse in a microring resonator system

    Get PDF
    AbstractWe propose a novel system that can be used to generate the new optical communication bandwidths (wavelength bands) using a Gaussian pulse propagating within a nonlinear microring resonator system. By using the wide range of the Gaussian input pulses, for instance, when the input pulses of the common lasers with center wavelengths from 400–1,400 nm are used. Results obtained have shown that more available wavelength bands from the different center wavelengths can be generated, which can be used to form new dense wavelength division multiplexing bands, whereas the use of the very high channel capacity for personal wavelength and network applications is plausible

    Photodetector performance enhancement using an electron accelerator controlled by light

    Get PDF
    A new method of photodetector performance enhancement using an embedded optical accelerator circuit within the photodetector is proposed. The principle of optical tweezer generation using a light pulse within a PANDA ring is also reviewed. By using a modified add-drop optical filter known as a PANDA microring resonator, which is embedded within the photodetector circuit, the device performance can be improved by using an electron injection technique, in which electrons can be trapped by optical tweezers generated by a PANDA ring resonator. Finally, electrons can move faster within the device via the optical waveguide without trapping center in the silicon bulk to the contact, in which the increase in photodetector current is seen. Simulation results obtained have shown that the device's light currents are increased by the order of four, and the switching time is increased by the order of five. This technique can be used for better photodetector performance and other semiconductor applications in the future
    corecore