13 research outputs found

    Heart Rate Variability as a Tool for Seizure Prediction: A Scoping Review

    Get PDF
    : The most critical burden for People with Epilepsy (PwE) is represented by seizures, the unpredictability of which severely impacts quality of life. The design of real-time warning systems that can detect or even predict ictal events would enhance seizure management, leading to high benefits for PwE and their caregivers. In the past, various research works highlighted that seizure onset is anticipated by significant changes in autonomic cardiac control, which can be assessed through heart rate variability (HRV). This manuscript conducted a scoping review of the literature analyzing HRV-based methods for detecting or predicting ictal events. An initial search on the PubMed database returned 402 papers, 72 of which met the inclusion criteria and were included in the review. These results suggest that seizure detection is more accurate in neonatal and pediatric patients due to more significant autonomic modifications during the ictal transitions. In addition, conventional metrics are often incapable of capturing cardiac autonomic variations and should be replaced with more advanced methodologies, considering non-linear HRV features and machine learning tools for processing them. Finally, studies investigating wearable systems for heart monitoring denoted how HRV constitutes an efficient biomarker for seizure detection in patients presenting significant alterations in autonomic cardiac control during ictal events

    Physical Model Tests on Spar Buoy for Offshore Floating Wind Energy Conversion

    Get PDF
    ABSTRACT: The present paper describes the experiences gained from the design methodology and operation of a 3D physical modelexperiment aimed to investigate the dynamic behaviour of a spar buoy floating offshore wind turbine. The physical model consists in a Froude-scaled NREL 5MW reference wind turbine (RWT) supported on the OC3-Hywind floating platform. Experimental tests have been performed at Danish Hydraulic Institute (DHI) offshore wave basin within the European Union-Hydralab+ Initiative, in April 2019. The floating wind turbine model has been subjected to a combination of regular and irregular wave attacks and different wind loads. Measurements of displacements, rotations, accelerations, forces response of the floating model and at the mooring lines have been carried out. First, free decay tests have been analysed to obtain the natural frequency and the modal damping ratios of each degree of freedom governing the offshore. Then, the results concerning regular waves, with orthogonal incidence to the structure, are presented. The results show that most of longitudinal dynamic response occurs at the wave frequency and most of lateral dynamic response occurs at rigid-body frequencies.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 654110, HYDRALAB+

    Design Methodology for a Floating Offshore Wind Turbine Large-Scale Outdoor Prototype

    Get PDF
    This paper discusses the methodology introduced by the authors to design a large-scale wind turbine model starting from the DTU 10MW RWT. The wind turbine will be coupled with the model of a multi-purpose floating structure, designed within the EU H2020 Blue Growth Farm project, and it will be deployed at the Natural Ocean Engineering Laboratory (NOEL). In this paper the different strategies used to design the wind turbine model rotor, tower and nacelle are discussed, focusing on how it has been possible to reproduce the full-scale system aero-elastic response while ensuring the same functionalities of a real wind turbine

    Large Aeroelastic Model of a Floating Offshore Wind Turbine: Mechanical and Mechatronics Design

    No full text
    A program was conducted to develop and instrumentation system to be used for obtaining accurate measurements of the interference fringe spacing in scattered light photoelasticity. To circumvent difficulties in modulating the light source, a stable D. C. intensity measuring system was developed along with the necessary optics. In support of this effort, a comprehensive study of materials to be used in scattered light photoelasticity was carried out. Other support efforts are described and results of a brief test of a sphere in diameter compression are given

    Large Aeroelastic Model of a Floating Offshore Wind Turbine: Mechanical and Mechatronics Design

    No full text
    This paper deals with the mechatronic design of a large-scale wind turbine model (outdoor scaled prototype) based on the DTU 10MW. This is going to be integrated in the model of a multi-purpose floating structure to be deployed at the Natural Ocean Engineering Laboratory (NOEL) in Reggio Calabria (Italy). The floating wind turbine model is the downscaling of the full-scale structure designed within the EU H2020 Blue Growth Farm project. The structural design of the scaled wind turbine is presented, starting from the aeroelastic and aerodynamic design carried out in a previous work

    Physical Model Tests on Spar Buoy for Offshore Floating Wind Energy Conversion: Users group H+ - DHI-09-SparBOFWEC

    No full text
    The present paper describes the experiences gained from the design methodology and operation of a 3D physical model experiment aimed to investigate the dynamic behaviour of a spar buoy (SB) off-shore floating wind turbine (WT) under different wind and wave conditions. The physical model tests have been performed at Danish Hydraulic Institute (DHI) off-shore wave basin within the European Union-Hydralab+ Initiative, in April 2019. The floating WT model has been subjected toa combination of regular and irregular wave attacks and wind loads

    Scaling strategies for multi-purpose floating structures physical modeling : state of art and new perspectives

    Get PDF
    Multi-purpose floating platforms are emerging as a promising concept in ocean engineering applications, thanks to their capability of ensuring system integration, cost reduction and modularization. However, their increasing complexity requires the development of numerical tools, which need to be validated experimentally through adequate physical models. New challenges hence arise, since the subsystems integrated in the structure generally follow different scaling laws and may need relatively large physical models to achieve a reliable similitude between the full-scale structure and its physical model counterpart. The latter issue can be critical, because indoor tests in wave tanks and basins constrain the scale factors to the size of the available facilities. Open-sea experiments, albeit challenging because of the uncontrolled environmental conditions, could be a valid complement to the traditional indoor tests. This article proposes a review of the multi-physics scaling strategies for the subsystems usually embedded in multi-purpose floating platforms, i.e. floating support, mooring system, wind turbine, wave energy converter and aquaculture facilities, by providing a critical analysis on the relevance of the scaling factor and of the scaling strategy. The paper may also serve as a guide for practical applications involving one or several of the considered subsystems
    corecore