204 research outputs found

    Quantification of the antimalarial drug pyronaridine in whole blood using LC–MS/MS — increased sensitivity resulting from reduced non-specific binding

    Get PDF
    Malaria is one of the most important parasitic diseases of man. The development of drug resistance in malaria parasites is an inevitable consequence of their widespread and often unregulated use. There is an urgent need for new and effective drugs. Pyronaridine is a known antimalarial drug that has received renewed interest as a partner drug in artemisinin-based combination therapy. To study its pharmacokinetic properties, particularly in field settings, it is necessary to develop and validate a robust, highly sensitive and accurate bioanalytical method for drug measurements in biological samples. We have developed a sensitive quantification method that covers a wide range of clinically relevant concentrations (1.5 ng/mL to 882 ng/mL) using a relatively low volume sample of 100 μL of whole blood. Total run time is 5 min and precision is within ±15% at all concentration levels. Pyronaridine was extracted on a weak cation exchange solid-phase column (SPE) and separated on a HALO RP amide fused-core column using a gradient mobile phase of acetonitrile–ammonium formate and acetonitrile-methanol. Detection was performed using electrospray ionization and tandem mass spectrometry (positive ion mode with selected reaction monitoring). The developed method is suitable for implementation in high-throughput routine drug analysis, and was used to quantify pyronaridine accurately for up to 42 days after a single oral dose in a drug-drug interaction study in healthy volunteers

    Optimal designs for population pharmacokinetic studies of oral artesunate in patients with uncomplicated falciparum malaria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Currently, population pharmacokinetic (PK) studies of anti-malarial drugs are designed primarily by the logistical and ethical constraints of taking blood samples from patients, and the statistical models that are fitted to the data are not formally considered. This could lead to imprecise estimates of the target PK parameters, and/or designs insufficient to estimate all of the parameters. Optimal design methodology has been developed to determine blood sampling schedules that will yield precise parameter estimates within the practical constraints of sampling the study populations. In this work optimal design methods were used to determine sampling designs for typical future population PK studies of dihydroartemisinin, the principal biologically active metabolite of oral artesunate.</p> <p>Methods</p> <p>Optimal designs were derived using freely available software and were based on appropriate structural PK models from an analysis of data or the literature and key sampling constraints identified in a questionnaire sent to active malaria researchers (3-4 samples per patient, at least 15 minutes between samples). The derived optimal designs were then evaluated via simulation-estimation.</p> <p>Results</p> <p>The derived optimal sampling windows were 17 to 29 minutes, 30 to 57 minutes, 2.5 to 3.7 hours and 5.8 to 6.6 hours for non-pregnant adults; 16 to 29 minutes, 31 minutes to 1 hour, 2.0 to 3.4 hours and 5.5 to 6.6 hours for designs with non-pregnant adults and children and 35 to 59 minutes, 1.2 to 3.4 hours, 3.4 to 4.9 hours and 6.0 to 8.0 hours for pregnant women. The optimal designs resulted in acceptable precision of the PK parameters.</p> <p>Conclusions</p> <p>The proposed sampling designs in this paper are robust and efficient and should be considered in future PK studies of oral artesunate where only three or four blood samples can be collected.</p

    Plasmodium falciparum drug resistance phenotype as assessed by patient antimalarial drug levels and Its association With pfmdr1 polymorphisms

    Get PDF
    Background. Multidrug-resistant Plasmodium falciparum is a major threat to global malaria control. Parasites develop resistance by gradually acquiring genetic polymorphisms that decrease drug susceptibility. The aim of this study was to investigate the extent to which parasites with different genetic characteristics are able to withstand individual drug blood concentrations. Methods. We analyzed 2 clinical trials that assessed the efficacy and effectiveness of artemether-lumefantrine. As a proof of concept, we used measured day 7 lumefantrine concentrations to estimate the concentrations at which reinfections multiplied. P. falciparum multidrug resistance gene 1 (pfmdr1) genotypes of these parasites were then correlated to drug susceptibility. Results. Reinfecting parasites with the pfmdr1 N86/184F/D1246 haplotype were able to withstand lumefantrine blood concentrations 15-fold higher than those with the 86Y/Y184/1246Y haplotype. Conclusions. By estimating drug concentrations, we were able to quantify the contribution of pfmdr1 single-nucleotide polymorphisms to reduced lumefantrine susceptibility. The method can be applied to all long-half-life antimalarial drugs, enables early detection of P. falciparum with reduced drug susceptibility in vivo, and represents a novel way for unveiling molecular markers of antimalarial drug resistance.Swedish Development Cooperation Agency-Department for Research Cooperation (SIDA-SAREC) [SWE 2004-3850, Bil-Tz 16/9875007059, SWE-2009-165]; World Health Organization MIM-TDR [[A60100] MAL IRM 06 03]; Goljes Foundation; Swedish medical research council [K2010-56X-21457-01-3]; Wellcome Trust of Great Britai

    Comparison of plasma, venous and capillary blood levels of piperaquine in patients with uncomplicated falciparum malaria

    Get PDF
    PURPOSE: Dihydroartemisinin-piperaquine (DP) is a fixed-dose artemisinin-based combination treatment. Field pharmacokinetic studies would be simplified and facilitated by being able to use small volume capillary assays rather than venous blood. The aim of this study was to describe the relationship between piperaquine concentrations measured in capillary blood, venous blood and venous plasma. METHODS: Samples of plasma, whole blood obtained by venesection and capillary blood were taken simultaneously from patients with uncomplicated Plasmodium falciparum malaria treated with DP between 0 and 9 weeks after treatment. Piperaquine concentrations in venous and capillary samples were measured using solid phase extraction and analysis by liquid chromatography with ultraviolet detection. RESULTS: A total of 161 sets of the three measures were obtained from 54 patients. Piperaquine concentrations in the venous blood samples were approximately twofold higher and those in the capillary blood samples were threefold higher than the corresponding venous plasma concentrations. Capillary blood piperaquine concentrations were approximately 1.7-fold higher than venous blood concentrations, and this difference also increased with time. CONCLUSION: Differences in whole blood and plasma levels of piperaquine suggest compartmentalisation of the drug within blood cells, as also occurs with the structurally related quinoline chloroquine. The relationship between piperaquine concentrations in the venous plasma, venous blood and capillary blood is variable and unpredictable at low concentrations. However, within the range of concentrations usually present in patients between 3 and 21 days after treatment with currently recommended doses, the relationship between capillary and venous whole blood is predictable; consequently, capillary blood sampling can be used in field assessments

    Modelling the optimal dosing schedule for artemether-lumefantrine chemoprophylaxis against malaria

    Get PDF
    Objective: Antimalarial chemoprophylaxis for high risk groups in endemic areas of Southeast Asia has the potential to reduce malaria transmission and accelerate elimination. However, the optimal choice of medication and dosing for many potential candidates is not clear. For a planned randomised controlled trial of prophylaxis for forest goers in Cambodia, artemether-lumefantrine (AL) was selected because of its ongoing efficacy and excellent tolerability and safety. As AL had not been used before for this purpose, a previously published pooled pharmacometric meta-model was used to determine the optimal dosing schedule. Results: A full 3 day AL treatment course given twice a month, and twice daily treatment given once a week, resulted in trough concentrations consistently above the therapeutic threshold of 200 ng/mL. However, the most favourable exposure profile, and arguably most practical dosing scenario, was an initial 3 day full AL treatment course followed by twice daily dosing given once a week for the duration of chemoprevention. The latter was adopted as the dosing schedule for the trial

    Artemisinin resistance in Plasmodium falciparum malaria.

    Get PDF
    BACKGROUND: Artemisinin-based combination therapies are the recommended first-line treatments of falciparum malaria in all countries with endemic disease. There are recent concerns that the efficacy of such therapies has declined on the Thai-Cambodian border, historically a site of emerging antimalarial-drug resistance. METHODS: In two open-label, randomized trials, we compared the efficacies of two treatments for uncomplicated falciparum malaria in Pailin, western Cambodia, and Wang Pha, northwestern Thailand: oral artesunate given at a dose of 2 mg per kilogram of body weight per day, for 7 days, and artesunate given at a dose of 4 mg per kilogram per day, for 3 days, followed by mefloquine at two doses totaling 25 mg per kilogram. We assessed in vitro and in vivo Plasmodium falciparum susceptibility, artesunate pharmacokinetics, and molecular markers of resistance. RESULTS: We studied 40 patients in each of the two locations. The overall median parasite clearance times were 84 hours (interquartile range, 60 to 96) in Pailin and 48 hours (interquartile range, 36 to 66) in Wang Pha (P<0.001). Recrudescence confirmed by means of polymerase-chain-reaction assay occurred in 6 of 20 patients (30%) receiving artesunate monotherapy and 1 of 20 (5%) receiving artesunate-mefloquine therapy in Pailin, as compared with 2 of 20 (10%) and 1 of 20 (5%), respectively, in Wang Pha (P=0.31). These markedly different parasitologic responses were not explained by differences in age, artesunate or dihydroartemisinin pharmacokinetics, results of isotopic in vitro sensitivity tests, or putative molecular correlates of P. falciparum drug resistance (mutations or amplifications of the gene encoding a multidrug resistance protein [PfMDR1] or mutations in the gene encoding sarco-endoplasmic reticulum calcium ATPase6 [PfSERCA]). Adverse events were mild and did not differ significantly between the two treatment groups. CONCLUSIONS: P. falciparum has reduced in vivo susceptibility to artesunate in western Cambodia as compared with northwestern Thailand. Resistance is characterized by slow parasite clearance in vivo without corresponding reductions on conventional in vitro susceptibility testing. Containment measures are urgently needed. (ClinicalTrials.gov number, NCT00493363, and Current Controlled Trials number, ISRCTN64835265.

    Artesunate/dihydroartemisinin pharmacokinetics in acute falciparum malaria in pregnancy: absorption, bioavailability, disposition and disease effects

    Get PDF
    AIM: To determine if reported lower plasma concentrations of artemisinin derivatives for malaria in pregnancy result from reduced oral bioavailability, expanded volume of distribution or increased clearance. METHODS: In a sequentially assigned crossover treatment study, pregnant women with uncomplicated falciparum malaria received i.v. artesunate (i.v. ARS) (4mgkg(-1) ) on the first day and oral ARS (4mgkg(-1) ) on the second, or, oral on the first and i.v. on the second, in both groups followed by oral ARS (4mgkg(-1) day(-1) ) for 5 days. Plasma concentrations of ARS and dihyroartemisinin (DHA) were measured by liquid chromatography-mass-spectrometry on days 0, 1, 2 and 6. Controls were the same women restudied when healthy (3 months post partum). RESULTS: I.v. ARS administration resulted in similar ARS and DHA pharmacokinetics in pregnant women with malaria (n= 20) and in controls (n= 14). Oral administration resulted in higher total drug exposure in pregnancy [AUC (95% CI) in (ngml(-1) h)/(mgkg(-1) )] of 55.1 (30.1, 100.0) vs. 26.5 (12.2, 54.3) for ARS, P= 0.002 and 673 (386, 1130) vs. 523 (351, 724) for DHA, P= 0.007. The corresponding median absolute oral bioavailability (F%) was 21.7 (12.6, 75.1) vs. 9.9 (6.0, 36.81) for ARS (P= 0.046) and 77.0 (42.2, 129) vs. 72.7 (42.0, 87.7) for DHA, P= 0.033. Total DHA exposure was lower at day 6 in pregnant women with malaria (P < 0.001) compared with day 0 or 1, but not in the controls (P= 0.084). CONCLUSIONS: This study demonstrates the effects of malaria on oral ARS drug disposition are greater than those of pregnancy. This probably results from a disease related reduction in first pass metabolism. The data are reassuring regarding current dosing recommendations

    Activity of Ivermectin and Its Metabolites against Asexual Blood Stage Plasmodium falciparum and Its Interactions with Antimalarial Drugs

    Get PDF
    Ivermectin is an endectocide used widely to treat a variety of internal and external parasites. Field trials of ivermectin mass drug administration for malaria transmission control have demonstrated a reduction of Anopheles mosquito survival and human malaria incidence. Ivermectin will mostly be deployed together with artemisinin-based combination therapies (ACT), the first-line treatment of falciparum malaria. It has not been well established if ivermectin has activity against asexual stage Plasmodium falciparum or if it interacts with the parasiticidal activity of other antimalarial drugs. This study evaluated antimalarial activity of ivermectin and its metabolites in artemisinin-sensitive and artemisinin-resistant P. falciparum isolates and assessed in vitro drug-drug interaction with artemisinins and its partner drugs. The concentration of ivermectin causing half of the maximum inhibitory activity (IC50) on parasite survival was 0.81 μM with no significant difference between artemisinin-sensitive and artemisinin-resistant isolates (P = 0.574). The ivermectin metabolites were 2-fold to 4-fold less active than the ivermectin parent compound (P &lt; 0.001). Potential pharmacodynamic drug-drug interactions of ivermectin with artemisinins, ACT-partner drugs, and atovaquone were studied in vitro using mixture assays providing isobolograms and derived fractional inhibitory concentrations. There were no synergistic or antagonistic pharmacodynamic interactions when combining ivermectin and antimalarial drugs. In conclusion, ivermectin does not have clinically relevant activity against the asexual blood stages of P. falciparum. It also does not affect the in vitro antimalarial activity of artemisinins or ACT-partner drugs against asexual blood stages of P. falciparum.</p

    Ribavarin for treating Lassa fever: A systematic review of pre-clinical studies and implications for human dosing

    Get PDF
    Ribavirin is currently the standard of care for treating Lassa fever. However, the human clinical trial data supporting its use suffer from several serious flaws that render the results and conclusions unreliable. We performed a systematic review of available pre-clinical data and human pharmacokinetic data on ribavirin in Lassa. In in-vitro studies, the EC50 of ribavirin ranged from 0.6 μg/ml to 21.72 μg/ml and the EC90 ranged from 1.5 μg/ml to 29 μg/ml. The mean EC50 was 7 μg/ml and the mean EC90 was 15 μg/ml. Human PK data in patients with Lassa fever was sparse and did not allow for estimation of concentration profiles or pharmacokinetic parameters. Pharmacokinetic modelling based on healthy human data suggests that the concentration profiles of current ribavirin regimes only exceed the mean EC50 for less than 20% of the time and the mean EC90 for less than 10% of the time, raising the possibility that the current ribavirin regimens in clinical use are unlikely to reliably achieve serum concentrations required to inhibit Lassa virus replication. The results of this review highlight serious issues with the evidence, which, by today standards, would be unlikely to support the transition of ribavirin from pre-clinical studies to human clinical trials. Additional pre-clinical studies are needed before embarking on expensive and challenging clinical trials of ribavirin in Lassa fever

    Pooled population pharmacokinetic analysis of tribendimidine for the treatment of Opisthorchis viverrini infections

    Get PDF
    Opisthorchiasis, caused by the foodborne trematode; Opisthorchis viverrini; , affects more than 8 million people in Southeast Asia. In the framework of a phase 2b clinical trial conducted in Lao People's Democratic Republic, pharmacokinetic samples were obtained from 125 adult and adolescent; O. viverrini; -infected patients treated with 400 mg tribendimidine following the design of a sparse sampling scheme at 20 min and 2, 7.75, 8, and 30 h after treatment using dried blood spot sampling. Pharmacokinetic data for the metabolites deacetylated amidantel (dADT) and acetylated dADT (adADT) were pooled with data from two previous ascending-dose trials and evaluated using nonlinear mixed-effects modeling. The observed pharmacokinetic data were described using a flexible transit absorption model for the active metabolite dADT, followed by one-compartment disposition models for both metabolites. Significant covariates were age, body weight, formulation, and breaking of the enteric coating on the tablets. There were significant associations between; O. viverrini; cure and both the dADT maximum concentration and the area under the concentration-time curve (; P; &lt; 0.001), with younger age being associated with a higher probability of cure. Modeling and simulation of exposures in patients with different weight and age combinations showed that an oral single dose of 400 mg tribendimidine attained therapeutic success in over 90% of adult patients. Our data confirmed that tribendimidine could be a valuable novel alternative to the standard treatment, praziquantel, for the treatment of; O. viverrini; infections
    corecore