47 research outputs found

    Salinity-Dependent Interfacial Phenomena Towards Hydrovoltaic Device Optimization

    Full text link
    Evaporation-driven fluid flow in porous or nanostructured materials has recently opened a new paradigm for renewable energy generation. Despite recent progress, major fundamental questions remain regarding the interfacial phenomena governing these so-called hydrovoltaic (HV) devices. Together with the lack of modelling tools, this limits the performance and application range of this emerging technology. By leveraging ordered arrays of Silicon nanopillars (NP) and developing a quantitative multiphysics model to study their HV response across a wide parameter space, this work reveals the complex interplay of surface-charge, liquid properties, and geometrical parameters, including previously unexplored electrokinetic interactions. Notably, we find that ion-concentration-dependent surface charge, together with ion mobility, dictates multiple local maxima in open circuit voltage, with optimal conditions deviating from conventional low-concentration expectations. Additionally, assessing the HV response up to molar concentrations, we provide unique evidence of ion adsorption and charge inversion for a number of monovalent cations. This effect interestingly enables the operation of HV devices even at such high concentrations. Finally, we highlight that, beyond electrokinetic parameters, geometrical asymmetries in the device structure generate an electrostatic potential that augments HV performance. Overall, our work, which lies in between single nanochannel studies and macro-scale porous system characterization, demonstrates that evaporation-driven HV devices can operate across a wide range of salinities, with optimal operating conditions being dictated by distinct interfacial phenomena. Thus it offers crucial insight and a design tool for enhancing the performance of evaporation-driven HV devices and enables their broader applicability across the salinity scale of natural and processed waters

    An overview of artificial nutrition in apiculture

    Get PDF
    Artificial nutrition in apiculture is a long-term subject of discussion and investigation. The maintenance and boosting of bee colonies in apiculture depends on synthetic food around the globe to overcome the suppressing factors, including dearth periods. The information on types of food components and their combinations used is haphazard and hardly helpful in determining the advancements in the artificial feeding of bees. This study aimed to extract the available information on artificial feeding on honeybees and arrange it most scientifically. The information in the form of research or review articles available on every platform, viz., soft portals, printed journals, books and scientific proceedings, were collected and analyzed to produce a comprehensive and informative review article on the artificial nutrients in apiculture. Compilation of the available information revealed that artificial feeding of bees depends on food components and their combinations. Based on this, it can be suggested that nectar and pollen are basic foods of honey bees, and based on this, the food components were further categorized as nectar supplements and pollen supplements. These supplements were fed to bees as natural nutrients and food components. The natural nutrients include proteins, carbohydrates, vitamins, yeasts, antibiotics, amino acids, enzymes, antioxidants, etc. Meanwhile, under natural food components, cereal grains, pulses, beans, fruits, vegetables, medicinal plants, spices, condiments, and some non-traditional/ miscellaneous kinds of stuff have been included in the bee diets. On the other hand, many diet categories have been prepared using the abovementioned nutrients and food components in various forms and proportions. In general, the pollen and nectar, the main food of bees, have been supplemented under different diet combinations. These diet combinations used pollen and nectar substitutes or combined with other nutrition, drugs, antibiotics, etc. The present investigation provides an updated overview of the food categories and their combinations used in the artificial feeding of bees to date. These findings can help explore new food items and their effective diet combinations

    Electrokinetic Energy Harvesting using Paper and Pencil

    Get PDF
    We exploit the combinatorial advantage of electrokinetics and tortutosity of cellulose-based paper network on a laboratory grade filter paper for the development of a simple, inexpensive, yet extremely robust (shows constant performance till 12 days) paper-and-pencil-based device for energy harvesting application. We successfully achieve to harvest maximum output power of 640 pW in single channel, while the same is significantly improved (by about 100 times) with the use of multichannel microfluidic array (maximum up to 20 channels). We envisage that such ultra-low cost devices may turn out to be extremely useful in energizing analytical microdevices in resource limited settings, for instance for extreme point of care diagnostics applications.Comment: 12 page

    Air Conditioning Using Radiant Cooling System

    Get PDF
    A Radiant cooling system alludes to a temperature-controlled surface that cools indoor temperatures by evacuating sensible heat and where the greater part of heat exchange happens through thermal radiation. Heat will spill out of objects, occupants, equipment and lights in a space to a cooled surface the length of their temperatures are hotter than that of the cooled surface and they are inside the observable pathway of the cooled surface. The procedure of radiant exchange negligibly effects on air temperature, yet through the procedure of convection, the air temperature will be brought down when air interacts with the cooled surface. Radiant cooling system utilizes the inverse impact of Radiant cooling system, which depends on the procedure of heat spill out of a warmed surface to items and inhabitants

    Where do T cell subsets stand in SARS-CoV-2 infection: An update

    Get PDF
    An outbreak of coronavirus disease 2019 (COVID-19) emerged in China in December 2019 and spread so rapidly all around the globe. It\u27s continued and spreading more dangerously in India and Brazil with higher mortality rate. Understanding of the pathophysiology of COVID-19 depends on unraveling of interactional mechanism of SARS-CoV-2 and human immune response. The immune response is a complex process, which can be better understood by understanding the immunological response and pathological mechanisms of COVID-19, which will provide new treatments, increase treatment efficacy, and decrease mortality associated with the disease. In this review we present a amalgamate viewpoint based on the current available knowledge on COVID-19 which includes entry of the virus and multiplication of virus, its pathological effects on the cellular level, immunological reaction, systemic and organ presentation. T cells play a crucial role in controlling and clearing viral infections. Several studies have now shown that the severity of the COVID-19 disease is inversely correlated with the magnitude of the T cell response. Understanding SARS-CoV-2 T cell responses is of high interest because T cells are attractive vaccine targets and could help reduce COVID-19 severity. Even though there is a significant amount of literature regarding SARS-CoV-2, there are still very few studies focused on understanding the T cell response to this novel virus. Nevertheless, a majority of these studies focused on peripheral blood CD4+ and CD8+ T cells that were specific for viruses. The focus of this review is on different subtypes of T cell responses in COVID-19 patients, Th17, follicular helper T (TFH), regulatory T (Treg) cells, and less classical, invariant T cell populations, such as δγ T cells and mucosal-associated invariant T (MAIT) cells etc that could influence disease outcome

    An overview of the Leucospidae (Hymenoptera, Chalcidoidea) of the Arabian Peninsula with description of a new species

    Get PDF
    An overview of the family Leucospidae (Hymenoptera, Chalcidoidea) is provided for the leucospid fauna of the Arabian Peninsula. Two genera containing four species are identified based on morphometrics and colour patterns. One species, Leucospis ayezae Usman, Anwar & Ahmad, sp. nov., is described. Leucospis elegans Klug had been previously recorded from Arabia Felix (= Yemen) and is recorded here for the first time from Saudi Arabia. The status of Leucospis aff. namibica from Yemen has been clarified, and this species is placed here in the genus Micrapion Kriechbaumer as M. clavaforme Steffan. An updated key and a map showing the distribution of the family Leucospidae in the Arabian Peninsula is provided. The occurrence and color morphs of all leucospid species that have been recorded so far from the region are briefly discussed

    Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic. Findings: Global DALYs increased from 2·63 billion (95% UI 2·44–2·85) in 2010 to 2·88 billion (2·64–3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7–17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8–6·3) in 2020 and 7·2% (4·7–10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0–234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7–198·3]), neonatal disorders (186·3 million [162·3–214·9]), and stroke (160·4 million [148·0–171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3–51·7) and for diarrhoeal diseases decreased by 47·0% (39·9–52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54–1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5–9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0–19·8]), depressive disorders (16·4% [11·9–21·3]), and diabetes (14·0% [10·0–17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7–27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6–63·6) in 2010 to 62·2 years (59·4–64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6–2·9) between 2019 and 2021. Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades. Funding: Bill & Melinda Gates Foundation

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions
    corecore