12 research outputs found

    Oxidative stree management is essential for anopheles mosquito survival post plasmodium infected blood meal ingestion

    Get PDF
    A Dissertation Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy in Life Sciences of the Nelson Mandela African Institution of Science and TechnologyAnopheles mosquitoes like other dipterans lack the flavoenzyme glutathione reductase (GR) of the GSH pathway and instead utilize the Thioredoxin (Trx) system for management of oxidative stress. Anopheles gambiae (An. gambiae) and Anopheles stephensi (An. stephensi) mosquitoes have been shown to regulate genes and proteins of the Trx system to protect midgut epithelial cells against reactive oxygen/nitrogen species (ROS/RNS) associated with Plasmodium berghei (P. berghei) infection. However, this mosquito vector-parasite combination is not natural and may not necessarily reflect human malaria transmission biology in the field. Despite its importance, a complete understanding of the Trx pathway at the molecular level is missing. Mosquito feeding assays were used to examine the Trx response pathway following midgut exposure to ROS/RNS, by measuring first the protein expression level of Thioredoxin-1 (AgTrx1) post exposure to tert-Butyl hydroperoxide (tBHP) by quantitative immunoblot analysis. This was followed by measuring the global proteomic response to Paraquat (Pqt) and tBHP exposure. The proteomic response was then compared to a spectrum of Trx- and GSH-dependant transcripts 24 hours post-infected bloodmeal ingestion in the more natural vector-parasite combination of An. gambiae-Plasmodium falciparum (P. falciparum) to assess for: (a) concordance between protein and transcript under different oxidative conditions and (b) similarity to the unnatural vectorparasite (An. gambiae/An. stephensi-P. berghei). It was observed that protein levels of AgTrx-1 remained unchanged in midgut epithelial cells exposed to different concentrations of tBHP. Moreover, proteomics profiles of midgut epithelial cells under tBHP-and Pqt-induced oxidative stress showed cells that are undergoing redox regulation through ribosomal/nucleolar and ERstress responses, respectively. This response is contrary to the canonical antioxidant response previously described. Furthermore, transcript data showed an absence of significant upregulation in the Trx- and GSH-dependent genes. This is consistent with the concept that P. falciparum does not induce marked midgut destruction in An. gambiae, therefore its invasion process is associated with reduced oxidative stress. The ribosomal/nucleolar and ER stress responses to oxidative stress suggest additional response mechanisms to the canonical antioxidant responses. These additional responses could be translated to develop strategies that could lead to unmanageable levels of ROS/RNS exposure to the parasite in the midgut, yet still allowing the mosquito to survive the dysregulation. This would lead to a stop in parasite development leading to blocking of transmission

    Patterns of human exposure to malaria vectors in Zanzibar and implications for malaria elimination efforts

    Get PDF
    Zanzibar provides a good case study for malaria elimination. The islands have experienced a dramatic reduction in malaria burden since the introduction of effective vector control interventions and case management. Malaria prevalence has now been maintained below 1% for the past decade and the islands can feasibly aim for elimination.; To better understand factors that may contribute to remaining low-level malaria transmission in Zanzibar, layered human behavioural and entomological research was conducted between December 2016 and December 2017 in 135 randomly selected households across six administrative wards. The study included: (1) household surveys, (2) structured household observations of nighttime activity and sleeping patterns, and (3) paired indoor and outdoor mosquito collections. Entomological and human behavioural data were integrated to provide weighted estimates of exposure to vector bites, accounting for proportions of people indoors or outdoors, and protected by insecticide-treated nets (ITNs) each hour of the night.; Overall, 92% of female Anopheles mosquitoes were caught in the rainy season compared to 8% in the dry season and 72% were caught outdoors compared to 28% indoors. For individual ITN users, ITNs prevented an estimated two-thirds (66%) of exposure to vector bites and nearly three quarters (73%) of residual exposure was estimated to occur outdoors. Based on observed levels of ITN use in the study sites, the population-wide mean personal protection provided by ITNs was 42%.; This study identified gaps in malaria prevention in Zanzibar with results directly applicable for improving ongoing programme activities. While overall biting risk was low, the most notable finding was that current levels of ITN use are estimated to prevent less than half of exposure to malaria vector bites. Variation in ITN use across sites and seasons suggests that additional gains could be made through targeted social and behaviour change interventions. However, even for ITN users, gaps in protection remain, with a majority of exposure to vector bites occurring outdoors before going to sleep. Supplemental interventions targeting outdoor exposure to malaria vectors, and groups that may be at increased risk of exposure to malaria vectors, should be explored

    Cytochrome P450/ABC transporter inhibition simultaneously enhances ivermectin pharmacokinetics in the mammal host and pharmacodynamics in Anopheles gambiae

    Get PDF
    Mass administration of endectocides, drugs that kill blood-feeding arthropods, has been proposed as a complementary strategy to reduce malaria transmission. Ivermectin is one of the leading candidates given its excellent safety profile. Here we provide proof that the effect of ivermectin can be boosted at two different levels by drugs inhibiting the cytochrome or ABC transporter in the mammal host and the target mosquitoes. Using a mini-pig model, we show that drug-mediated cytochrome P450/ABC transporter inhibition results in a 3-fold increase in the time ivermectin remains above mosquito-killing concentrations. In contrast, P450/ABC transporter induction with rifampicin markedly impaired ivermectin absorption. The same ketoconazole-mediated cytochrome/ABC transporter inhibition also occurs outside the mammal host and enhances the mortality of Anopheles gambiae. This was proven by using the samples from the mini-pig experiments to conduct an ex-vivo synergistic bioassay by membrane-feeding Anopheles mosquitoes. Inhibiting the same cytochrome/xenobiotic pump complex in two different organisms to simultaneously boost the pharmacokinetic and pharmacodynamic activity of a drug is a novel concept that could be applied to other systems. Although the lack of a dose-response effect in the synergistic bioassay warrants further exploration, our study may have broad implications for the control of parasitic and vector-borne diseases

    Real-time PCR detection of mixed Plasmodium ovale curtisi and wallikeri infections in human and mosquito hosts

    Get PDF
    Plasmodium ovale curtisi (Poc) and Plasmodium ovale wallikeri (Pow) represent distinct non-recombining Plasmodium species that are increasing in prevalence in sub-Saharan Africa. Though they circulate sympatrically, co-infection within human and mosquito hosts has rarely been described. Separate 18S rRNA real-time PCR assays that detect Poc and Pow were modified to allow species determination in parallel under identical cycling conditions. The lower limit of detection was 0.6 plasmid copies/μL (95% CI 0.4–1.6) for Poc and 4.5 plasmid copies/μL (95% CI 2.7–18) for Pow, or 0.1 and 0.8 parasites/μL, respectively, assuming 6 copies of 18s rRNA per genome. However, the assays showed cross-reactivity at concentrations greater than 103 plasmid copies/μL (roughly 200 parasites/μL). Mock mixtures were used to establish criteria for classifying mixed Poc/Pow infections that prevented false-positive detection while maintaining sensitive detection of the minority ovale species down to 100 copies/μL (<1 parasite/μL). When the modified real-time PCR assays were applied to field-collected blood samples from Tanzania and Cameroon, species identification by real-time PCR was concordant with nested PCR in 19 samples, but additionally detected two mixed Poc/Pow infections where nested PCR detected a single Po species. When real-time PCR was applied to oocyst-positive Anopheles midguts saved from mosquitoes fed on P. ovale-infected persons, mixed Poc/Pow infections were detected in 11/14 (79%). Based on these results, 8/9 P. ovale carriers transmitted both P. ovale species to mosquitoes, though both Po species could only be detected in the blood of two carriers. The described real-time PCR approach can be used to identify the natural occurrence of mixed Poc/Pow infections in human and mosquito hosts and reveals that such co-infections and co-transmission are likely more common than appreciated

    Proceedings of an expert workshop on community agreement for gene drive research in Africa - Co-organised by KEMRI, PAMCA and Target Malaria.

    Get PDF
    Gene drive research is progressing towards future field evaluation of modified mosquitoes for malaria control in sub-Saharan Africa. While many literature sources and guidance point to the inadequacy of individual informed consent for any genetically modified mosquito release, including gene drive ones, (outside of epidemiological studies that might require blood samples) and at the need for a community-level decision, researchers often find themselves with no specific guidance on how that decision should be made, expressed and by whom. Target Malaria, the Kenya Medical Research Institute and the Pan African Mosquito Control Association co-organised a workshop with researchers and practitioners on this topic to question the model proposed by Target Malaria in its research so far that involved the release of genetically modified sterile male mosquitoes and how this could be adapted to future studies involving gene drive mosquito releases for them to offer reflections about potential best practices. This paper shares the outcomes of that workshop and highlights the remaining topics for discussion before a comprehensive model can be designed

    Proceedings of an expert workshop on community agreement for gene drive research in Africa - Co-organised by KEMRI, PAMCA and Target Malaria.

    Get PDF
    Gene drive research is progressing towards future field evaluation of modified mosquitoes for malaria control in sub-Saharan Africa. While many literature sources and guidance point to the inadequacy of individual informed consent for any genetically modified mosquito release, including gene drive ones, (outside of epidemiological studies that might require blood samples) and at the need for a community-level decision, researchers often find themselves with no specific guidance on how that decision should be made, expressed and by whom. Target Malaria, the Kenya Medical Research Institute and the Pan African Mosquito Control Association co-organised a workshop with researchers and practitioners on this topic to question the model proposed by Target Malaria in its research so far that involved the release of genetically modified sterile male mosquitoes and how this could be adapted to future studies involving gene drive mosquito releases for them to offer reflections about potential best practices. This paper shares the outcomes of that workshop and highlights the remaining topics for discussion before a comprehensive model can be designed

    Paraquat-Mediated Oxidative Stress in <em>Anopheles gambiae</em> Mosquitoes Is Regulated by An Endoplasmic Reticulum (ER) Stress Response

    Get PDF
    Paraquat is a potent superoxide (O2−)-inducing agent that is capable of inducing an oxidative imbalance in the mosquito midgut. This oxidative imbalance can super-stress the malaria parasite, leading to arrested development in the mosquito midgut and reduced transmission. While several studies have explored the effect of paraquat on malaria parasites, a fundamental understanding of the mosquito response to this compound remains unknown. Here, we quantified the mosquito midgut proteomic response to a paraquat-laced sugar meal, and found that An. gambiae midguts were enriched in proteins that are indicative of cells under endoplasmic reticulum (ER) stress. We also carried out qRT-PCR analyses for nine prominent thioredoxin (Trx) and glutathione (GSH)-dependent genes in mosquito midguts post P. falciparum blood meal ingestion to evaluate the concordance between transcripts and proteins under different oxidative stress conditions. Our data revealed an absence of significant upregulation in the Trx and GSH-dependent genes following infected blood meal ingestion. These data suggest that the intrinsic tolerance of the mosquito midgut to paraquat-mediated oxidative stress is through an ER stress response. These data indicate that mosquitoes have at least two divergent pathways of managing the oxidative stress that is induced by exogenous compounds, and outline the potential application of paraquat-like drugs to act selectively against malaria parasite development in mosquito midguts, thereby blocking mosquito-to-human transmission

    Ribosomal/nucleolar stress induction regulates tert-Butyl hydroperoxide (tBHP) mediated oxidative stress in Anopheles gambiae midguts

    Get PDF
    Abstract Objective A fundamental understanding of redox homeostasis in Anopheles gambiae midgut cells under different oxidative conditions is missing. Such knowledge can aid in the development of new malaria transmission-blocking strategies aimed at disrupting natural homeostatic processes in the mosquito during Plasmodium parasite uptake (i.e. blood feeding). The aim of this study was to understand how the An. gambiae midgut regulates oxidative stress to reactive oxygen species (ROS), especially to a potent ROS-inducer such as tert-Butyl hydroperoxide (tBHP). Results Initial studies using quantitative immunoblot indicated that the expression of the classical antioxidant protein An. gambiae thioredoxin-1 (AgTrx-1) remained unchanged across challenges with different concentrations of tBHP suggesting that additional mechanisms to regulate ROS may be involved. We therefore conducted a global proteomic survey, which revealed that An. gambiae midguts under low (50 μM) and high (200 μM) tBHP concentrations were enriched in proteins indicative of ribosomal/nucleolar stress. Ribosomal stress is an inherent cellular response to an imbalance in ribosomal proteins (RPs) due to cellular stress such as oxidative stress. Our data suggest that ribosomal/nucleolar stress is the primary cellular response in An. gambiae midguts under tBHP challenge. Considering these results, we discuss harnessing the ribosomal stress response as a potential malaria transmission-blocking strategy
    corecore