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ABSTRACT 

Anopheles mosquitoes like other dipterans lack the flavoenzyme glutathione reductase (GR) of the 

GSH pathway and instead utilize the Thioredoxin (Trx) system for management of oxidative stress. 

Anopheles gambiae (An. gambiae) and Anopheles stephensi (An. stephensi) mosquitoes have been 

shown to regulate genes and proteins of the Trx system to protect midgut epithelial cells against 

reactive oxygen/nitrogen species (ROS/RNS) associated with Plasmodium berghei (P. berghei) 

infection. However, this mosquito vector-parasite combination is not natural and may not 

necessarily reflect human malaria transmission biology in the field. Despite its importance, a 

complete understanding of the Trx pathway at the molecular level is missing.  

Mosquito feeding assays were used to examine the Trx response pathway following midgut 

exposure to ROS/RNS, by measuring first the protein expression level of Thioredoxin-1 (AgTrx-

1) post exposure to tert-Butyl hydroperoxide (tBHP) by quantitative immunoblot analysis. This 

was followed by measuring the global proteomic response to Paraquat (Pqt) and tBHP exposure. 

The proteomic response was then compared to a spectrum of Trx- and GSH-dependant transcripts 

24 hours post-infected bloodmeal ingestion in the more natural vector-parasite combination of An. 

gambiae-Plasmodium falciparum (P. falciparum) to assess for: (a) concordance between protein 

and transcript under different oxidative conditions and (b) similarity to the unnatural vector-

parasite (An. gambiae/An. stephensi-P. berghei). It was observed that protein levels of AgTrx-1 

remained unchanged in midgut epithelial cells exposed to different concentrations of tBHP. 

Moreover, proteomics profiles of midgut epithelial cells under tBHP-and Pqt-induced oxidative 

stress showed cells that are undergoing redox regulation through ribosomal/nucleolar and ER-

stress responses, respectively. This response is contrary to the canonical antioxidant response 

previously described. Furthermore, transcript data showed an absence of significant upregulation 

in the Trx- and GSH-dependent genes. This is consistent with the concept that P. falciparum does 

not induce marked midgut destruction in An. gambiae, therefore its invasion process is associated 

with reduced oxidative stress.  

The ribosomal/nucleolar and ER stress responses to oxidative stress suggest additional response 

mechanisms to the canonical antioxidant responses. These additional responses could be translated 

to develop strategies that could lead to unmanageable levels of ROS/RNS exposure to the parasite 
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in the midgut, yet still allowing the mosquito to survive the dysregulation. This would lead to a 

stop in parasite development leading to blocking of transmission.  
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CHAPTER ONE 

GENERAL INTRODUCTION AND BACKGROUND 

1.1 Malaria Overview 

Malaria is a disease caused by a blood cell infection by a protozoan parasite of the genus 

Plasmodium. Malaria is transmitted from an infected to an uninfected human by female 

mosquitoes of the genus Anopheles (Carter & Mendis, 2002). Historically, four species of 

Plasmodium parasites are known to infect humans, these are Plasmodium malariae (P. malariae), 

Plasmodium ovale (P. ovale), Plasmodium vivax (P. vivax) and Plasmodium falciparum (P. 

falciparum) (Carter & Mendis, 2002). Currently, six species of Plasmodium are known to infect 

humans and these are P. falciparum, P. vivax, P. malariae, Plasmodium knowlesi (P. knowlesi) 

(evidence of only zoonotic transmission) and the recently recognized species of P. ovale curtisi 

(former classic type) and P. ovale wallikeri (former variant type) (Cox-Singh et al., 2008; Cox-

Singh & Singh, 2008; Fuehrer & Noedl, 2014; Singh et al., 2004; Sutherland et al., 2010).  

The widest global distribution has almost been achieved by P. vivax and P. malariae having been 

identified and characterized in Europe since historical times as benign tertian and quartan periodic 

fevers, respectively (Celli, 1933; Jones, 1909). Today, P. vivax and P. falciparum are the most 

widespread malaria parasites with P. falciparum being the most prevalent on the African continent, 

while P. vivax has a wider geographical distribution across Asia as well as Central and South 

America (Carter & Mendis, 2002). Not all existing species of Anopheles mosquitoes transmit 

malaria; out of about 400 existing species only 30 are vectors of major importance (Global Malaria 

Programme, 2015b; Sinka et al., 2012). In Africa, four species of Anopheles mosquitoes are the 

dominant vectors: Anopheles coluzzii, Anopheles gambiae s.s., Anopheles arabiensis, and 

Anopheles funestus (Sinka et al., 2011; Sinka et al., 2012).  

About 3.2 billion people, that is nearly half of the world’s population, are at risk of malaria. In 

2017 alone, there were an estimated 219 million new cases of malaria and 435 000 deaths (Global 

Malaria Programme, 2018). Most of the malaria cases occurred in Sub-Saharan Africa and thus P. 

falciparum was responsible for most of the malaria cases and deaths (Global Malaria Programme, 

2018). Despite the high mortality rate, substantial progress in malaria control has been made. There 
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were an estimated 20 million fewer cases in 2017 compared to the year 2010, which registered an 

estimated 239 million cases globally as shown in Fig. 1 below.  

 

Figure 1. Global malaria cases as of 2017. The figure shows countries with indigenous 
Malaria cases in 2000 and their status in 2017 (Global Malaria Programme, 
2018) 

Only a minimal (if not slightly upward) change in the global malaria cases was reported between 

2015-17, suggesting that progress had generally stalled (Global Malaria Programme, 2018). This 

is a massive obstacle in the vision of a world free of malaria through the WHO Global Technical 

Strategy (GTS) 2016-30, that aims for at least a 40% reduction in malaria cases and deaths by the 

year 2020, at least a 90% reduction in cases and deaths by the year 2030, and elimination of malaria 

in at least 35 countries by the year 2030 (Global Malaria Programme, 2015a). In 2017, annual 

funding for malaria control and elimination were estimated at US$ 3.1 billion per year (Global 

Malaria Programme, 2018).  

Annual funding for malaria control and elimination will have to increase to at least US$ 6.6 billion 

per year by 2020 if we are to meet the 2030 GTS goals (Global Malaria Programme, 2018). With 

this in mind, it’s clearly evident that the current tools for malaria control are reaching or have 

reached their maximum protective levels. Novel strategies for malaria control that will 
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complement the existing tools will have a profound effect on the number of malaria cases and 

deaths, and thus shifting the balance in favour of malaria control and elimination efforts. For this 

to happen, there is an urgent need for detailed understanding of the basic biology of Plasmodium, 

Anopheles, and their host-parasite interactions in order to develop novel strategies against malaria. 

1.1.1 Plasmodium Life Cycle 

Plasmodium leads an intricate life cycle that involves development in the invertebrate female 

Anopheles mosquito and a vertebrate (e.g. humans). In each of these divergent hosts, Plasmodium 

undergoes development in different body compartments of the host. 

1.1.2 Pre-erythrocytic (Liver) Stages 

The life cycle in the vertebrate host begins when Plasmodium sporozoites residing in mosquito’s 

salivary glands are injected into their skin as it probes for blood (Sinnis & Zavala, 2012). Using 

its proboscis (a prominent mouthpart), Anopheles mosquitoes repeatedly thrust (probe) into a 

host’s dermal network of blood vessels searching for a blood vessel and during this process of 

probing, saliva is deposited to prevent the blood from coagulating while simultaneously 

introducing the sporozoites within it into the skin of the host (Matsuoka, Yoshida, Hirai, & Ishii, 

2002; Sidjanski & Vanderberg, 1997).  

Sporozoites use gliding motility until they encounter a blood vessel and are then transported 

passively to the liver (Amino et al., 2007; Amino et al., 2006; Hopp et al., 2015; Vanderberg & 

Frevert, 2004). Upon reaching the liver, sporozoites cross through the liver sinusoidal cells and 

Kupffer cells (resident macrophages) before finally reaching the hepatocytes (Mota, Hafalla, & 

Rodriguez, 2002; Mota et al., 2001; Pradel & Frevert, 2001; Pradel, Garapaty, & Frevert, 2002, 

2004). The sporozoites migrate through several hepatocytes until reaching a final one where they 

multiply and grow within a parasitophorous vacuole (PV) as shown in Fig. 2 (Frevert, 2004; Pradel 

et al., 2002). Each sporozoite develops into a schizont containing tens of thousands merozoites 

(Amino et al., 2006; Kebaier, Voza, & Vanderberg, 2009). The duration of development of 

sporozoites in the liver lasts for an average of 7 days with variability depending on the Plasmodium 

specie (Vaughan, Aly, & Kappe, 2008). Matured merozoites are packed into budding vesicle called 

merosomes , evident in Plasmodium species that infect rodents P. bergehi and P. yoelii, leave the 
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hepatocytes and the liver intact entering the blood stream where it ruptures to releases the 

merozoites as shown in Fig. 2 (Baer, Klotz, Kappe, Schnieder, & Frevert, 2007; Sturm et al., 2006). 

It is not evident whether P. falciparum merozoites also leave the hepatocytes through merosomes, 

however merosome-like structures have been observed in the liver of humanized mice (Soulard et 

al., 2015; Vaughan et al., 2012).  

In P. vivax and P.ovale, some of the early liver stages may remain dormant for some time after 

sporozoite invasion of hepatocytes (Battle et al., 2014). These forms are known as hypnozoites 

and may develop into schizonts later after some latent period. Hypnozoites are responsible for 

relapse of clinical infection after the initial infection (Cogswell, 1992; Collins, 2007; Krotoski, 

1989; Lover & Coker, 2013). It is worth mentioning that the infection of hepatocytes by a 

Plasmodium sporozoite and subsequent development is silent and doesn’t bring about any clinical 

symptoms of malaria to the infected individual.  

1.1.3 Erythrocytic (Blood) Stages 

The ejected merozoites contact a red blood cell (RBC) and invade it to initiate the erythrocytic 

(blood) stage as shown in Fig. 2. Invasion of RBC by merozoites is facilitated by molecular 

interactions between distinct ligands on the surface of the merozoite and host receptors on the RBC 

membrane (Alaganan, Singh, & Chitnis, 2017; Cowman & Crabb, 2006; Cowman, Tonkin, Tham, 

& Duraisingh, 2017). It has been observed that the duration from the release of merozoites from 

the liver to invasion of RBCs is extremely quick occurring in few seconds (Dvorak, Miller, 

Whitehouse, & Shiroishi, 1975; Gilson & Crabb, 2009; Glushakova, Yin, Li, & Zimmerberg, 

2005; Winograd, Clavijo, Bustamante, & Jaramillo, 1999). This is a very fast process because the 

merozoite is one of the few stages in Plasmodium life cycle in which the parasite is extracellular 

and therefore must minimize the window of exposure of the antigens on its surface, and thereby 

avoiding detection by the host immune response (Wright & Rayner, 2014).  

The merozoites are enclosed in a PV inside the RBC and undergoes cyclic development through 

the ring, trophozoite, and schizont stages over the duration of 24-72 hours depending on 

Plasmodium species (Hanssen, McMillan, & Tilley, 2010). Shortly after invasion (~0-18 hrs) the 

central region of the parasite becomes quite thin while the peripheral regions thicken due to 

presence of the nucleus and other organelles. This gives infected RBC its characteristics “ring” 
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appearance when smears are stained with Giemsa as shown in Fig. 2 (Hanssen et al., 2010). Also, 

finger-like extensions of the PV membrane are observed forming the basis for exportation of 

proteins from the parasite to RBC cytoplasm and membrane (Boddey & Cowman, 2013; De 

Koning-Ward, Dixon, Tilley, & Gilson, 2016; Goldberg & Cowman, 2010). The parasite begins 

to ingest and digest haemoglobin that is abundantly present in the RBC cytoplasm through a cell 

mouth known as cytostome (Elliott et al., 2008; Lazarus, Schneider, & Taraschi, 2008; Smythe, 

Joiner, & Hoppe, 2008). The digestion of haemoglobin releases free haem and globin; globin is 

degraded into its constituent amino acids which are used by the parasite for growth, while haem is 

toxic and is sequestered into a crystalline form known as hemozoin (malaria pigment) (Abu Bakar, 

Klonis, Hanssen, Chan, & Tilley, 2010; Scholl, Tripathi, & Sullivan, 2005; Wunderlich, Rohrbach, 

& Dalton, 2012). The ring stage is thought to serve as a lag phase during which the host membrane 

undergoes modifications necessary for subsequent export and surface expression of parasite 

proteins involved in immune evasion and virulence (Spielmann et al., 2006).  

During the trophozoite stage (~20-38 hrs post invasion) the parasite continues to ingest on 

haemoglobin and grow as shown in Fig. 2. The parasite is at its metabolically most active stage, 

characterized by the large number of free rough ER, a Golgi complex, and an increase in size of 

the mitochondrion, signifying an increase in protein synthesis (Hanssen et al., 2010). Exportation 

of parasite’s proteins to the RBC membrane continues to happen and modification of this 

membrane is evident with structures such as the Maurer’s cleft (MC) and knobs (Boddey & 

Cowman, 2013; De Koning-Ward et al., 2016; Goldberg & Cowman, 2010). These structures on 

the RBC membrane associate with other peripheral proteins and act as platforms for the 

presentation of parasite’s adhesion proteins, such as the P. falciparum erythrocyte membrane 

protein-1 (PfEMP-1) (Haldar & Mohandas, 2007).  

During the schizont stage (~38-48 hrs post invasion) the parasite undergoes multiple rounds of 

mitotic DNA replication to produce 16-20 merozoites each with their own complete set of 

organelles and invasion machinery as shown in Fig 2 (Hanssen et al., 2010). Similarly, 

haemoglobin ingestion by the parasite continues and at this stage approximately 80% of RBC’s 

haemoglobin has been consumed (Loria, Miller, Foley, & Tilley, 1999). The type of division that 

the parasite undergoes is termed as schizogony, characterized by multiple rounds of nuclear 

divisions happening prior to cell division (Gerald, Mahajan, & Kumar, 2011; Matthews, Duffy, & 



 

 

 6 

Merrick, 2018). The result is multiple daughter merozoites tightly packed/stacked within a 

schizont as shown in Fig. 2 (Bannister, Hopkins, Fowler, Krishna, & Mitchell, 2000). When the 

infected RBC ruptures it releases the merozoites into the bloodstream to invade other RBCs 

restarting the blood stage cycle of the parasite as shown in Fig.2. The release of merozoites into 

the blood stream is accompanied by malaria paroxysm (bouts of illness alternating with symptom 

free periods), which is brought about by extremely high levels of pro-inflammatory cytokines from 

splenic macrophages in their attempt to remove parasitized or altered RBCs (Clark, Budd, Alleva, 

& Cowden, 2006; Haldar, Murphy, Milner, & Taylor, 2007; Schofield & Grau, 2005). In P. vivax 

and P. ovale malaria, fever occurs after every 48 hours (tertian malaria), whereas in P. malariae 

malaria fever occurs after every 72 hours (quartan malaria). The fever in P. falciparum malaria 

may occur after every 48 hours and usually severe and often fatal (Carter & Mendis, 2002). 

1.1.4 Gametocyte Formation (Sexual) Stages 

A sub-population of blood stage parasites will produce gametocyte progeny and initiate the sexual 

cycle as shown in Fig. 2. Gametocyte development (gametocytogenesis) happens in the 

intermediate vertebrate host until maturation before they are taken up by a mosquito vector 

(Nilsson, Childs, Buckee, & Marti, 2015). Commitment to gametocytogenesis is believed to occur 

at a low “baseline” rate during each asexual blood stage cycle (Kafsack et al., 2014; Sinha et al., 

2014). However, several environmental cues collectively termed as “stress” have been reported to 

alter this baseline rate of conversion from asexual to sexual parasites (Nilsson et al., 2015). These 

environmental cues include antimalarial drugs, anaemia, elevated reticulocytes levels, and host 

immune factors (Talman, Domarle, McKenzie, Ariey, & Robert, 2004).  

The first step in gametocytogenesis begins with the sexually committed schizont. The molecular 

switch responsible for the commitment from asexual to sexual development is the activation of the 

transcription factor Apetala2-G (AP2-G), found in both P. falciparum and P. berghei (Kafsack et 

al., 2014; Sinha et al., 2014). In P. falciparum, AP2-G has been shown to be under the epigenetic 

control of histone deacetylase 2 (PfHda2) and heterochromatin protein 1 (PfHP1) (Brancucci et 

al., 2014; Coleman et al., 2014). Expression of AP2-G during blood stage development has been 

shown to be silenced by PfHda2 and PfHP1. In P. falciparum, the schizont expressed proteins 

gametocyte development protein 1 (PfGDV1) and Nima-related kinase 4(PfNEK4) have been 
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identified as potential upstream activators of AP2-G (Eksi et al., 2012; Filarsky et al., 2018; 

Reininger, Garcia, Tomlins, Muller, & Doerig, 2012). Furthermore, a recent study in P. falciparum 

has shown presence of lysophosphatidylcholine (lysoPC), a class of phospholipids abundant in 

serum, which modulates gametocytes commitment (Brancucci et al., 2017). However, it remains 

unclear how lysoPC translates into PfGDV1 and AP2-G activation. Activation of AP2-G in a 

subpopulation of blood stage parasites in early schizogony results in the expression of gametocyte 

specific genes in all their daughter merozoites. These daughter merozoites become sexually 

committed and develop into gametocytes instead of merozoites on subsequent reinvasion of RBCs 

(Ngotho et al., 2019; Nilsson et al., 2015).   

Development of P. falciparum gametocytes proceeds through five morphologically discernible 

stages (I-V) over the course of 9-12 days (Hawking, Wilson, & Gammage, 1971). Stage I 

gametocytes are similar in appearance to asexual trophozoites and morphologically 

indistinguishable. Stages II-V gametocytes are different in appearance to asexual blood stage 

parasites. They transition from a lemon or oat grain shape with pointed end in stage II, to the letter 

D resemblance in stage III, to a banana shape in stage IV, and finally to a crescent shape with 

rounded ends in stage V (Sinden, 1982). Development of stage I-IV gametocytes takes place in 

the extravascular compartments of the bone marrow and spleen, while mature stage V gametocytes 

are present in peripheral blood circulation (Aguilar et al., 2014; De Niz et al., 2018; Joice et al., 

2014; Lee, Waters, & Brewer, 2018). Mature stage V gametocytes pass through the 

microvasculature in the dermis in order to increase the likelihood of ingestion by feeding 

mosquitoes (Bousema et al., 2012; Nixon, 2016). Male and female gametocytes present in the 

ingested blood meal undergo fertilization and proceed through other developmental stages inside 

the mosquito. 

1.1.5 Sporogonic (Mosquito) Stages 

Female Anopheles mosquitoes require a blood meal, breaking it down to its constituent amino 

acids, and using them for egg production. Blood feeding and reproduction can be repeated every 

3–4 days for the duration of the female Anopheles mosquito’s lifespan and Plasmodium utilizes 

this cyclic feeding behaviour for its transmission from one vertebrate host to the next (Smith & 

Jacobs-Lorena, 2010). Between the next 8 -15 days, depending on the Plasmodium specie, the 
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parasite develops in the mosquito midgut then leaving this compartment and making its way into 

the salivary glands, ready for transmission to another human host in subsequent mosquito bites as 

shown in Fig. 2 (Baton & Ranford-Cartwright, 2005).  

Ingested gametocytes pass to the midgut lumen of the mosquito and within ~ 5-20 minutes 

gametocytes egress from their host erythrocytes and initiate gametogenesis to produce male and 

female gametes, microgamete and macrogamete respectively as shown in Fig. 2 (Baton & Ranford-

Cartwright, 2005). Gametogenesis is triggered by the fall in temperature from ~37oC in the 

vertebrate host to ambient temperature in the mosquito, and the presence of a mosquito derived 

factor called xanthurenic acid (XA) (Billker et al., 1998; Garcia, Wirtz, Barr, Woolfitt, & 

Rosenberg, 1998; Nijhout, 1979; Sinden, Butcher, Billker, & Fleck, 1996). In vitro, gametogenesis 

can be triggered by a decrease in temperature and an increase in pH from 7.4 to 8.2 (Billker, Shaw, 

Margos, & Sinden, 1997; Nijhout & Carter, 1978). Gametocytes emerge from the ingested RBCs 

where female gametocytes (macrogametocytes) produce a single non-motile spherical female 

gamete, while male gametocytes (microgametocytes) undergo exflagellation, a process of 3 rounds 

of endomitosis, to produce 8 motile microgametes as shown Fig. 2 (Baton & Ranford-Cartwright, 

2005; Smith & Jacobs-Lorena, 2010). Within ~1 hour of blood meal ingestion into the mosquito 

midgut, the haploid micro- and macrogametes fuse to form a diploid zygote as shown in Fig. 2 

(Janse, Van der Klooster, Van der Kaay, Van der Ploeg, & Overdulve, 1986; Sinden, 1983). The 

diploid zygote initiates the first round of endomeiotic division within 2-3 hours after fertilization 

(Janse et al., 1986; Sinden, Hartley, & Winger, 1985). The zygote then transforms into a motile 

ookinete during the next 10-30 hours as shown in Fig. 2, and the second round of endomeiotic 

division occurs during this period (Aikawa, Carter, Ito, & Nijhout, 1984; Mehlhorn & Peters, 1980; 

Robert et al., 1998).  

Ookinetes asynchronously begin to leave the blood bolus at ~20-36 hours after blood meal 

ingestion, traverse the peritrophic matrix (PM) and invade the midgut epithelium (Baton & 

Ranford-Cartwright, 2004). Peritrophic matrix is an extracellular envelope composed of chitin, 

glycoproteins and proteoglycans that lines the digestive tract of most insects (Shao, Devenport, & 

Jacobs-Lorena, 2001; Tellam, Wijffels, & Willadsen, 1999). In hematophagous insects, including 

Anopheles mosquitoes, the PM is secreted by midgut epithelial cells caused by distension of 

mosquito midgut following ingestion of a blood meal, and completely surrounds the blood meal 
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compartmentalizing the midgut lumen into ecto-(outer) and endo(-inner) peritrophic spaces (Baton 

& Ranford-Cartwright, 2004; Shao et al., 2001; Tellam et al., 1999). The PM serves as molecular 

sieve that mediates the movement of molecules (enzymes, metabolites, and digested products) to 

and from the midgut lumen, and acts as a barrier to pathogen invasion of midgut epithelium 

(Billingsley & Rudin, 1992; Dinglasan et al., 2009; Langer, Li, Popov, Kurosky, & Vinetz, 2002; 

Langer, Li, & Vinetz, 2002; Li et al., 2004; Shahabuddin, Lemos, Kaslow, & Jacobs-Lorena, 1996; 

Shahabuddin, Toyoshima, Aikawa, & Kaslow, 1993). Ookinete invasion of midgut epithelium is 

rapid and happens within ~30 mins, with the ookinete traversing through several epithelial cells 

before settling into the basal lamina space (Han, Thompson, Kafatos, & Barillas-Mury, 2000; 

Zieler & Dvorak, 2000). There is successive reduction in parasite numbers due to various factors 

happening in the mosquito midgut from gamete formation and fertilization, zygote transformation 

into the ookinete and ookinete migration across the midgut epithelium (Graca-Souza et al., 2006; 

Han & Barillas-Mury, 2002; Han et al., 2000; Kumar, Gupta, Han, & Barillas-Mury, 2004; Lensen, 

Bolmer-Van de Vegte, Van Gemert, Eling, & Sauerwein, 1997; Naotunne, Karunaweera, Mendis, 

& Carter, 1993; Peterson, Gow, & Luckhart, 2007).  

Within ~24-48 hours after blood meal ingestion, the ookinete initiates the process to transform into 

a sessile spherical oocyst in the basal lamina as shown in Fig. 2 (Baton & Ranford-Cartwright, 

2004; Han et al., 2000). Mitotic replication immediately ensues after oocyst formation and 

continues throughout the period of sporogony, followed by sporoblast formation during middle-

aged oocysts (~5-10) days, and last with sporozoites budding off from the sporoblast bodies during 

the remaining days of oocyst development (Howells & Davies, 1971; Sinden & Strong, 1978). At 

this stage, Plasmodium parasites experiences a resurgence in their numbers with ~1 x 103–104 

sporozoites being produced per oocyst  (Beier, 1998).  

Sporozoites then egress from a mature oocyst and traverse the basal lamina into the mosquito 

haemolymph. In the haemolymph, the sporozoites are passively transported to the salivary glands 

and invade them as shown in Fig. 2. During subsequent blood feeding by an infectious mosquito, 

the sporozoites in the salivary glands are injected with saliva into the vertebrate (human) host 

dermal tissues, thus initiating the next stage of Plasmodium life cycle as shown in Fig. 2 

(Frischknecht et al., 2004; Vanderberg & Frevert, 2004).  
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Figure 2. Life cycle of common human malaria parasites. (Right panel) Plasmodium 

development in the vertebrate host (human). (Left panel) Plasmodium 
development in the vector (mosquito). The diagram is reproduced with minor 
amendments from (Smith, Vega-Rodriguez, & Jacobs-Lorena, 2014) and 
(Bousema & Drakeley, 2011) 

1.1.6 Control and Treatment of Malaria  

Between 2000-2015 a total of 663 (542-753 credible interval) million clinical cases of malaria 

were averted cases translating into 18%, and ~50% decline in cases and number of deaths (Bhatt 

et al., 2015; Global Malaria Programme, 2015b). This substantial reduction in both the number of 

cases and deaths globally is due to the widescale roll out of control and treatment measures for 

malaria (Bhatt et al., 2015). Control of malaria has mainly been achieved by targeting the mosquito 

vector, while treatment has focused on case management with antimalarials against the 

Plasmodium parasite and its effective diagnosis. One of the greatest challenges in malaria control 

and treatment has been the development of resistance in Anopheles and Plasmodium against 
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insecticides and antimalarials, respectively; reducing the effectiveness of the current control and 

treatment interventions against malaria.  

1.1.7 Vector Control 

The primary vector control interventions include the use of insecticide-treated (bed)nets (ITNs) 

and indoor residual spraying (IRS) of houses with insecticides. These interventions have had 

massive success in the control of mosquito vectors in Africa (Bhatt et al., 2015; Lengeler, 2004). 

This is predominantly due to the fact that the principal malaria vectors, Anopheles gambiae and 

Anopheles funestus complexes (Gillies & Coetzee, 1987; Gillies & De Meillon, 1968; White, 

1973), primarily feed on humans (anthropophagy) while indoors (endophagy) at night and rest 

indoors (endophily) (Gillies & De Meillon, 1968; Killeen et al., 2006; Pates & Curtis, 2005) as 

explained in Table 1. Insecticide-treated nets have been shown to not only offer personal protection 

against infectious bites but also reduce the survival, feeding frequency, feeding success and density 

of mosquito vector populations if reasonable levels of community-wide coverage are achieved, 

with approximately half of the population using them each night (Hawley et al., 2003; Killeen & 

Smith, 2007; Killeen et al., 2007). Therefore, ITNs not only prevent malaria in protected persons 

(those who frequently use them) but can also reduce the exposure of unprotected person by 

suppressing transmission across entire communities.  

Extensive use of ITNs and IRS has resulted in a dynamic shift in the malaria vector population 

(Killeen, 2014). In the recent past, vectors that feed predominantly outdoors (exophagic), early at 

night, and on animals (zoophily), as explained in Table 1, have been observed in Africa 

(Geissbuhler et al., 2007; Lwetoijera et al., 2014; Oyewole & Awolola, 2006; Pates & Curtis, 

2005; Russell et al., 2010). This shift in malaria vectors population dynamics has resulted from a 

response to the use of ITNs and IRS (Killeen, 2014). This has the consequence of drastically 

reducing the level of personal protection conferred by ITNs and IRS (Mutuku et al., 2011; Okumu, 

Kiware, Moore, & Killeen, 2013; Russell et al., 2010). It is believed that this population of 

zoophilic and exophagic mosquitoes that can bite outdoors, early at night, and on livestock in the 

absence of human blood source, are sustaining malaria transmission in areas of low endemicity in 

Africa (Finda et al., 2019; Monroe et al., 2019). Furthermore, effectiveness of ITNs and IRS has 

severely been impacted by the development of insecticide resistance in mosquito populations 
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across many settings (Alout, Labbe, Chandre, & Cohuet, 2017; Benelli & Beier, 2017; 

Hemingway, 2018). In that regard, vector control interventions that will complement existing tools 

are needed. A number of other interventions such as larval source management (LSM), attractive 

toxic sugar baits (ATSB), endoectocides, spatial repellents, and mosquito-proofed housing have 

been shown to be effective and sustainable as complementary interventions to ITNs and IRS 

(Ferguson et al., 2010; Killeen et al., 2017; Williams et al., 2018).  

Table 1. Definition of mosquito host seeking behaviour and preference 

Mosquito Behaviour Definition 

Anthropophagy is a tendency of mosquitoes to prefer feeding on human hosts 

Endophagy is a tendency for mosquitoes to prefer biting indoors 

Endophily is a tendency for mosquitoes to prefer resting indoors 

Exophagy is a tendency for mosquitoes to prefer biting outdoors 

Exophily is a tendency of mosquitoes to prefer resting outdoors 

Zoophagy is a tendency of mosquitoes to prefer feeding on animal hosts  

1.1.8 Antimalarials 

Historically, antimalarials have played a significant part in combating malaria alongside vector 

control interventions explained above. The earliest records of antimalarial treatment come from 

ancient China in the year 340 AD, where extracts from the mugwort herb were shown to have 

fever-reducing properties (Klayman, 1985). It should be noted that the mugwort herb belongs to 

the genus Artemisia, and the fever reducing properties of this herb is based on the plasmodicidal 

properties of the ingredient artemisinin, which is synthetically produced today and used as the first 

line treatment against malaria in many parts of the world (Kong & Tan, 2015). Other records of 

historical antimalarial treatment come from the 15th century in Peru, where the bark of a local tree, 

called “quina” by the natives, was used to treat the wife of the Spanish viceroy of Peru. The fever 

reducing properties of this bark were later studied by Spanish Jesuits who imported the bark back 

to Europe and name it Cinchona, after the name of the wife of the Spanish Viceroy of Peru (Lee, 

2002). In the early 19th century, two French chemists isolated quinine from the cinchona bark and 

it immediately became the favoured treatment against malaria throughout the world (Meshnick, 

1998). Prior to World War II, German scientists were able to synthesize Chloroquine, a 4-
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aminoquinoline, as a replacement for quinine (Coatney, 1963; Honigsbaum, 2002; Loeb, 1946). 

Due to inexpensive production, availability, and effectiveness, chloroquine became the first-line 

treatment against malaria in many parts of the world from 1943 until the later years of the 20th 

century.  

(i) Chloroquine  

Chloroquine (CQ) is described as a 4-aminoquinoline compound. CQ acts by interfering with the 

process of haem (ferri/fferroprotoporphyrin IX; FP) detoxification (Tilley, Loria, & Foley, 2001).  

As the parasite is growing inside the RBC (intraerythrocytic development) it ingests on the 

abundantly available amounts of haemoglobin releasing free FP and globin in its digestive food 

vacuole (Francis, Sullivan, & Goldberg, 1997; Goldberg et al., 1991). Globin is broken down by 

the parasite’s proteases into constituent amino acids, some of which are used by the parasite for its 

growth. However, free haem is toxic and has deleterious effects on the parasite and has to be 

immediately removed (Foley & Tilley, 1998). Plasmodium lacks the enzyme haem oxygenase 

needed to degrade the free haem and disposes of it in part by polymerizing it into an inert polymer 

called hemozoin or degradation through redox pathways (Eckman, Modler, Eaton, Berger, & 

Engel, 1977; Egan et al., 2002; Ginsburg, Famin, Zhang, & Krugliak, 1998; Slater, 1993; Slater & 

Cerami, 1992). CQ binds to free FP and also adsorbs to the growing faces of the hemozoin crystals, 

disrupting the detoxification process and poisoning the parasite (Dorn et al., 1998; Pagola, 

Stephens, Bohle, Kosar, & Madsen, 2000; Sullivan, Gluzman, Russell, & Goldberg, 1996). This 

is the reason why CQ is only effective against stages of the parasite (trophozoites and schizonts) 

that are actively ingesting haemoglobin and not against other stages of the parasite, such as the 

pre-erythrocytic or gametocytes (Butcher, 1997). Plasmodium parasites resistant to CQ survive by 

reducing the accumulation of the drug in the digestive food vacuole (Verdier, Le Bras, Clavier, 

Hatin, & Blayo, 1985).  

The Global Malaria Eradication Programme was launched by WHO in 1955 and focused on two 

aspects: CQ for treatment and prevention and DDT for vector control (Greenwood et al., 2008). 

The campaign achieved some considerable successes, especially in areas of low malaria 

transmission such as North America and Europe (Jensen & Mehlhorn, 2009). However, the global 

campaign against malaria experienced major hurdles, one being the development of CQ resistance 
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noticed as early as 1957 in Southeast Asia along the Thai-Cambodia border and its spread to the 

rest of the world (Grimmond, Donovan, & Riley, 1976; Harinasuta, Suntharasamai, & Viravan, 

1965; Lobel, Campbell, Schwartz, & Roberts, 1985; Moore & Lanier, 1961; Talisuna, Bloland, & 

D'Alessandro, 2004). The campaign was officially abandoned as a goal in 1972. In Tanzania, the 

earliest accounts of chloroquine resistance were observed among non-immune travellers in 1978 

(Lobel et al., 1985). But as early as 1990, the proportion of malaria parasite that were resistant to 

chloroquine had increased to 52% (Premji, Minjas, & Shiff, 1994). In 2001 the Tanzania national 

malaria control program guidelines changed from the required use of chloroquine to sulfadoxine-

pyrimethamine as the first line treatment for malaria (Taverne, 2001).  

(ii) Sulfadoxine-Pyrimethamine  

Sulfadoxine was developed in the early 1960s while Pyrimethamine was developed a few years 

prior in the 1950s (Laing, 1965; Russell & Hitchings, 1951). The combination of sulfadoxine and 

pyrimethamine (SP) was approved for use for the treatment of malaria in 1971. Both drugs are 

known to target Plasmodium folate biosynthesis pathway by competitively inhibiting the enzymes 

dihydropteroate synthase (DHPS) and dihydrofolate reductase (DHFR), respectively (Nzila et al., 

2005; Sibley et al., 2001). Actively dividing and growing cells, such as Plasmodium parasites, 

depend on folate biosynthesis for generation of folate derivatives essential for DNA replication 

and protein synthesis (Hyde, 2005). By inhibiting Plasmodium DHPS and DHFR, SP deprives the 

parasite with necessary nutrients required for development and thus lethal to the parasite (Ferone, 

Burchall, & Hitchings, 1969; Hitchings & Burchall, 1965; Hurly, 1959; Rollo, 1955; Watkins, 

Mberu, Winstanley, & Plowe, 1997; Zhang & Rathod, 2002). 

As SP replaced CQ as the first line treatment against malaria in many parts of the world, its 

widespread use eventually led to the development of resistance against it. Resistance was first 

noted in South America and Southeast Asia as early as 1970s, a short time after they were 

introduced and later on it spread to Africa (Global Partnership to Roll Back Malaria, 2005; 

Heinberg & Kirkman, 2015; Le Bras & Durand, 2003). A few years after its introduction as the 

first line treatment against malaria in Tanzania, increasing parasite resistance was observed, and 

in 2006 the country made a second change in its first line treatment against malaria from SP to 

artemisinin-based combination therapy (Mugittu et al., 2005; Mugittu et al., 2004). By the year 
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2005 most malaria endemic countries had made a shift from SP to artemisinin-based combination 

therapy as their first line treatment against malaria (Eastman & Fidock, 2009). Despite widespread 

resistance against it, SP is currently being used for intermittent preventive treatment in pregnancy 

(IPTp) and in infants (IPTi) (Bardaji, Bassat, Alonso, & Menendez, 2012; Peters, Thigpen, Parise, 

& Newman, 2007). 

(iii) Artemisinin-based Combination Therapy   

Artemisinin was isolated by Chinese scientists in 1972 from Artemisia annua (sweet wormwood), 

better known to Chinese herbalists from more than 2 000 years as qinghaosu (Klayman, 1985; 

Kong & Tan, 2015). Artemisinin is a potent, quick-acting and very effective antimalaria drug, 

especially when it’s used in combination with another drug that has a longer half-life, widely 

known as artemisinin-based combination therapy (ACT) (Ezzet, Mull, & Karbwang, 1998; Hassan 

Alin, Bjorkman, & Wernsdorfer, 1999; Jansen et al., 2007). The principle behind ACT is based on 

the assumption that given short plasma half-life artemisinin but high potency of artemisinin 

combined with a longer acting drug would eliminate any chances of parasites not cleared within 

the few hours of the drug action and prevent chances of developing resistance (Global Partenrship 

to Roll Back Malaria [RBM], 2001). Artemisinin and other artemether-group drugs have become 

the front-line treatment against malaria in many endemic countries. Due to the great positive 

impact of Artemisinin in combating Malaria, the 2015 Nobel Prize in Physiology and Medicine 

was jointly awarded to Tu Youyou, a Chinese scientist who is credited for the isolation of 

Artemisinin in 1971.  

Artemisinin is a sesquiterpene lactone compound with an endoperoxide bridge. The mode of action 

of artemisinin has been the subject of debate as several theories have been proposed (O'Neill, 

Barton, & Ward, 2010). The most accepted theory is bioactivation of artemisinin by haem (Tilley, 

Straimer, Gnadig, Ralph, & Fidock, 2016; Wang, Zhang, et al., 2015). This theory states 

hypothesizes that endoperoxide bridge of Artemisinin is cleaved in the presence of free haem 

forming an O-centred radical that self-arranges to form a C-centred radical (Olliaro, Haynes, 

Meunier, & Yuthavong, 2001; Wu et al., 1998). The generated radicals can further react with 

several cellular targets, including proteins and membrane lipids in their vicinity, bringing about 

deleterious effects to the parasite (Cui & Su, 2009).  
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Another theory on mode of action is through haem polymerization. Haem is generated from 

haemoglobin digestion and must be immediately removed due to its toxicity to the parasite. In 

vitro experiments have shown that artemisinin-haem adducts inhibit haem polymerization in a 

mechanism that involves parasite’s histidine-rich proteins-II and III, and that this inhibition most 

likely leads to free accumulation of the toxic FP (Wang, Zhang, et al., 2015). Other suggested 

theories include the direct inhibition of PfATP6, a sarco/endoplasmic reticulum calcium dependent 

ATPase in P. falciparum, and respiratory chain of the mitochondria through the production of ROS 

(Eckstein-Ludwig et al., 2003; Krungkrai, Burat, Kudan, Krungkrai, & Prapunwattana, 1999; Li 

et al., 2005).  

Despite its widespread use as first line antimalarial, cases of resistance against ACT have been 

reported along the Thai-Cambodia border (Noedl et al., 2010; Samarasekera, 2009). Initially, the 

resistance was confined to the non-artemisinin partner drug and were associated with various 

haplotypes of either P. falciparum multidrug resistance 1(Pfmdr1) or P. falciparum CQ resistance 

transporter (Pfcrt) (Pickard et al., 2003; Price et al., 2004; Sidhu et al., 2006; Witkowski et al., 

2017). It’s only recently that resistance to artemisinin was directly associated with the kelch 

propeller domain (K13-propeller) polymorphisms in laboratory parasites and subsequently proven 

in field isolates from Southeast Asia. Furthermore, these mutations and several others were as well 

found in more than 18 countries in sub-Saharan Africa though in low frequencies (Ariey et al., 

2014; Fairhurst & Dondorp, 2016). The fear is that artemisinin resistance will spread to other parts 

of the world such as Africa from Southeast Asia, as it was the case for the other two widely used 

antimalarials (CQ and SP) and severely hampering the efforts against Malaria (Takala-Harrison & 

Laufer, 2015).  

(iv) Transmission-blocking Drugs 

Transmission-blocking interventions are tools that are capable of inhibiting the transmission of 

Plasmodium parasites to the mosquito. The intervention can be either a transmission-blocking drug 

(TBD) or transmission blocking vaccine (TBV) against the parasite at either gametocyte, gamete, 

zygote, or ookinete stage (Delves, Angrisano, & Blagborough, 2018). This section will solely 

focus on TBDs and how oxidative stress can be used as a transmission-blocking strategy.  
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The strategy of targeting the transmission of Plasmodium parasites to mosquitoes is particularly 

opportune. The parasite experiences a population bottleneck during the transmission from human 

to mosquito such that less than five parasite per mosquito are present at the oocyst stage (Gouagna 

et al., 1998; Rosenberg, 2008; Sinden & Billingsley, 2001; Whitten, Shiao, & Levashina, 2006). 

Although the figure of less than five oocyst per mosquito is widely variable, it is considerably less 

than the number of parasites (~ typically 109) circulating in the bloodstream of malaria-infected 

humans (Baton & Ranford-Cartwright, 2012; Medley et al., 1993; Sinden, 2017). This presents an 

advantage for the targeted killing of parasites during the transmission stages of the life cycle. 

Furthermore, Plasmodium parasites are extracellular during the first 24 hours in the mosquito 

compared to ~30 seconds in humans during merozoite invasion of erythrocytes (Gilson & Crabb, 

2009). This results into a larger window of opportunity for immune/pharmacological destruction 

of the parasite (Delves et al., 2018). Lastly, targeting of parasites during transmission stages is 

conceptually associated with reduction in development of resistance by: (a) the number of genes 

expressed by the parasites during the transmission stages are invariant to those expressed during 

blood/liver-stages in the human resulting in reduced polymorphism and (b) TBDs adds to the 

arsenal of drugs against the parasite, therefore increasing the number of targets the parasite has to 

develop resistance against and substantially slowing the process of resistance development in a 

similar manner to how multi-target drug approach works (Escalante, Lal, & Ayala, 1998; 

Niederwieser, Felger, & Beck, 2001).  

Examples of TBDs in use for malaria treatment 

There have been tremendous efforts in the discovery and development of transmission-blocking 

drugs over the years. This endeavour has received an additional boost by the recent decision by 

Medicines for Malaria Venture (MMV) to formalise the development of compounds specifically 

targeting malaria parasite transmission, e.g. target candidate profile-5 (TCP-5) (Burrows et al., 

2017). A vast number of compounds have subsequently been identified through high-throughput 

transmission screening assays following this decision (Almela et al., 2015; Bolscher et al., 2015; 

Delves et al., 2016; Lucantoni, Duffy, Adjalley, Fidock, & Avery, 2013; Miguel-Blanco et al., 

2015; Plouffe et al., 2016; Ruecker et al., 2014; Tanaka et al., 2013). Currently, there are three 

clinically approved antimalarials that show well supported transmission-blocking efficacy: 

primaquine (PQ), methylene blue (MB), and atovaquone (ATQ) (Delves et al., 2018).  
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Primaquine is an 8-aminoquinoline that is derived from plasmoquine (plasmochin, pamaquine). 

Plasmoquine is one of the first generally available synthetic anti-malarial, used predominantly in 

the cure of P. vivax and P. ovale, relapsing infection by eliminating the dormant liver hypnozoite 

stage of these parasites (Ashley, Recht, & White, 2014). It has an additional effect of killing mature 

gametocytes by unknown mechanism that translates in accelerated gametocyte clearance and 

cumulative impaired development of subsequent mosquito stages (Burgess & Bray, 1961). 

However, PQ causes haemolytic anaemia in individuals who are deficient in the enzyme glucose-

6-phosphate dehydrogenase (G6PD) deficient (Ashley et al., 2014). The deficiency in this enzyme 

is an X-linked mutation that is widespread in malaria endemic areas with gene frequencies 

typically ranging from 3-30%, and thus limiting the use of PQ (Howes et al., 2012). Nevertheless, 

with renewed interest in malaria elimination, single low dose of PQ (0.25mg/kg) is recommended 

for use by the WHO for transmission-blocking (Goncalves et al., 2016).  

Interestingly, MB was the first synthetic anti-malarial to be used, which occurred in a German 

hospital some 120 years ago (Gutttman & Ehrlich, 1891). Its global use in malaria endemic areas 

is well documented for the late 19th and early 20th centuries (Frost, 1908; Marshall, 1920; 

Marshall & Gee, 1893). However, its global use faded with the discovery of new synthetic 

antimalarials (Schirmer, Adler, Pickhardt, & Mandelkow, 2011). Interest in MB as an anti-malaria 

was renewed when GR was identified as a new drug target, although this concept is still contested 

(Buchholz et al., 2008; Farber, Arscott, Williams, Becker, & Schirmer, 1998; Pastrana-Mena et 

al., 2010; Sarma et al., 2003; Schirmer et al., 2003). Methylene blue appears to perturb the redox 

balance within the parasite, and like 4-aminoquinolines, it also interacts with the polymerisation 

of haem to hemozoin (Buchholz et al., 2008). MB is effective against asexual blood stage parasites, 

gametocytes, and mosquito stages (Lu et al., 2018).MB has been considered as a potential useful 

partner drug for ACT, particularly when elimination is the final goal (Muller, Sie, Meissner, 

Schirmer, & Kouyate, 2009). 

Atovaquone is a hypoxaphthoquinone that selectively inhibits mitochondrial electron transport 

chain at the cytochrome bc1 complex of malaria parasites (Barton, Fisher, Biagini, Ward, & 

O'Neill, 2010). This drug is given in combination with Proguanil as Malarone® and is now 

considered as a first-line prophylaxis for travelers to prevent the development of liver-stage 

parasites (Staines et al., 2018). Potent transmission-blocking activity of ATQ has been shown 
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against ookinete and oocyst formation in the mosquito when carried across in the bloodmeal 

(Butcher & Sinden, 2003; Fowler, Sinden, & Pudney, 1995). Although not tested yet, the concept 

of atovaquone-combination therapy as an effective and long-lasting transmission blocking drug is 

very appealing (Delves et al., 2018). 

The future of transmission-blocking strategy for development of antimalarials looks very 

promising. Cipargamin (KAE609/NITD609), SJ733, and KAF156 are several of transmission-

blocking antimalarials at various stages in clinical development (Dennis, Lehane, Ridgway, 

Holleran, & Kirk, 2018; Jimenez-Diaz et al., 2014; Kuhen et al., 2014; Lim et al., 2016; Van Pelt-

Koops et al., 2012; White et al., 2016; White et al., 2014). However, development of TBDs to 

date, has been regarded as adding transmission-blocking activity to schizonticides. This approach 

has the possibility of developing TBDs that are minimally effective by: (a) in vitro data of most 

advanced transmission-blocking molecules shows that they require drug concentrations about an 

order of magnitude higher than the schizonticidal dose to be efficacious and (b) if resistance 

mechanisms in asexual parasites also translate to resistance in gametocytes which are already 

sensitive to the particular schizonticide, there will likely be preferential transmission of resistance 

alleles (Delves et al., 2018). An alternative approach is the development of TBDs that would 

specifically target biological pathways specific to gametocytes and/or mosquito stages with no 

activity against blood stage parasites (Delves et al., 2018). 

1.1.9 Vaccines 

Vaccines have been readily developed for many bacterial and viral infections, and they have had 

dramatic impact on the eradication of infectious diseases, such as smallpox and polio (Hoffman, 

Vekemans, Richie, & Duffy, 2015). Vaccines are considered the most cost-effective single 

intervention for control, prevention, elimination, and eradication of infectious diseases due to such 

great previous success (Hoffman et al., 2015). However, the development of an effective and safe 

vaccine against malaria has been one of the greatest challenges that have vexed malariologists for 

a very long time. This is primarily due to the complex biology of Plasmodium parasites compared 

to the bacteria and viruses for which we have vaccines. The genome of Plasmodium is much larger 

than those of bacteria or viruses (Pf> 5000 genes), with multiple stages in their life cycle (Carlton 

et al., 2008; Gardner et al., 2002; Hall et al., 2005; Pain et al., 2008). This greater number of genes 
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translates into an extensive antigenic diversity across the multiple life stages of the parasite 

(Ouattara et al., 2015; Riley & Stewart, 2013). Such that, protective antibodies against sporozoites 

injected by mosquitoes do not recognize the asexual blood stages that cause the disease (Hoffman 

et al., 2015). Furthermore, natural malaria infection does not induce much immune protection. It 

is only after repeated and prolonged exposure to Plasmodium parasites that immunity is acquired, 

which is short-lived ad highly stage- and strain-specific (Waters, 2006). This immunity is unable 

to eradicate all the parasites, nor does it provide complete protection against future challenge 

(Waters, 2006). Instead, it only results in a mild, sometimes asymptomatic infection with the 

persistence of parasites (Waters, 2006).  

Despite these challenges, several vaccine candidates have been tested over the years, many without 

much success. Due to the complexity in Plasmodium life cycle, some of these candidate vaccines 

target the pre-erythrocytic stages, some the erythrocytic stages, some on the sexual stages, some 

on mosquito stages and some are multi-stage targeting the parasite at more than one stage in its 

life cycle (Hoffman et al., 2015). However, steady progress is being made, especially with regards 

to breakthroughs in our understanding of the cellular and molecular mechanisms mediating 

protection in animal models and humans (Draper et al., 2018). This recent success coupled with 

the renewed global optimism for achieving malaria elimination and eradication by the year 2030 

have led to a revised Malaria Vaccine Technology Roadmap to 2030, which has called for a next-

generation vaccine to achieve 75% efficacy over 2 years against P. falciparum and/or P. vivax, 

while also retaining its original 2015 “landmark” goal of a first-generation vaccine with protective 

efficacy of >50% lasting more than a year (Draper et al., 2018; Moorthy, Newman, & Okwo-Bele, 

2013). Herein, we provide an overview on some of the vaccine candidates, which were successful 

to progress to human trials, and touch base on future prospects for vaccine candidates across the 

different stages of Plasmodium life cycle.  

(i) Pre-erythrocytic Vaccines   

Pre-erythrocytic malaria vaccine development encompasses both the invading sporozoite and liver 

stage of Plasmodium infection. Vaccines for this stage have been the major focus for several 

reasons: (a) low numbers of inoculated sporozoites and therefore low numbers of infected 

hepatocytes (b) human parasites like P. falciparum and P. vivax take nearly a week to complete 
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development in hepatocytes, providing sufficient time for an effective immune response to 

eliminate them; (c) parasite infection at this stage is clinically silent (completely asymptomatic); 

and (d) effective killing of parasite at this stage will prevent the subsequent symptomatic stage 

(Lindner, Miller, & Kappe, 2012). However, apart from the above-mentioned advantages, 

development of pre-erythrocytic vaccine has been quite challenging. The pre-erythrocytic vaccine 

must provide sterile immunity from sporozoite infection to protect against malaria infection 

(Doolan & Martinez-Alier, 2006; Silvie, Amino, & Hafalla, 2017). Escape by a single parasite 

form pre-erythrocytic development results in full-blown symptomatic blood stage infection 

(Alonso et al., 2005; Waters, 2006).  

CSP is an immunodominant pre-erythrocytic antigen and a suitable candidate for a vaccine (Arnot 

et al., 1985; Dame et al., 1984; Enea et al., 1984). The most advanced vaccine candidate is based 

on the circumsporozoite protein (CSP) and is known as RTS,S (Casares, Brumeanu, & Richie, 

2010; Cohen, Nussenzweig, Nussenzweig, Vekemans, & Leach, 2010). It has shown sub-optimal 

results in the field by reducing clinical malaria by 30-50% (Agnandji et al., 2012, 2014, 2015; 

Agnandji et al., 2011; Neafsey et al., 2015). Despite this low efficacy, it is argued that RTS,S will 

substantially save lives if used in complement with other malaria control and treatment tools. It is 

for this reason that RTS,S is now branded as “Mosquirix” and is going to be deployed in Kenya, 

Malawi, and Ghana in what is known as malaria vaccine implementation programme (MVIP) 

(Global Malaria Programme, 2016; World Health Organization, 2016, 2018). Other 

immunodominant pre-erythrocytic antigens with vaccine candidates in clinical trial stages include, 

the sporozoite surface protein-2/thrombospondin-related adhesion protein (SSP2/TRAP) and cell 

traversal protein for ookinetes and sporozoites (CelTOS) (Bergmann-Leitner, Legler, 

Savranskaya, Ockenhouse, & Angov, 2011; Bergmann-Leitner et al., 2010; Ewer et al., 2013; 

Hodgson et al., 2015). Further research work on pre-erythrocytic subunit vaccines has largely 

focused on achieving higher vaccine efficacy by enhancing the CD8+ T cells responses through 

several strategies such as viral-vectored or DNA-based (Duffy, Sahu, Akue, Milman, & Anderson, 

2012; Hill et al., 2010; Kazmin et al., 2017; Ockenhouse et al., 2015; Schuldt & Amalfitano, 

2012).  

Seminal studies on immunization of rodents, nonhuman primates, and humans with radiation-

attenuated sporozoites (RAS) showed that they develop sterile immunity from an infected 
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mosquito bite challenge (Nussenzweig, Vanderberg, & Most, 1969; Nussenzweig, Vanderberg, 

Most, & Orton, 1967; Vanderberg, Nussenzweig, & Most, 1969; Vanderberg, Nussenzweig, Most, 

& Orton, 1968). These studies developed the rationale for a whole sporozoite vaccine and 

introduced a challenge model that has become the gold standard of assessing immune protection 

after vaccination (Clyde, 1975; Clyde, Most, McCarthy, & Vanderberg, 1973). However, it was 

generally thought that, scaling up RAS vaccines for clinical use was too challenging, so attention 

was turned to developing subunit malaria vaccines. This was until the company Sanaria® 

embarked on a mission to translate the mosquito-based immunization approach into injectable 

whole P. falciparum sporozoite (PfSPZ) malaria vaccines, and to use the vaccine(s) to eliminate 

malaria from geographically defined areas through mass immunization ad to prevent malaria in 

non-immune visitors to malarious areas (Hoffman et al., 2015). A breakthrough came in 2009 

when the company was able to isolate a purified, aseptic, cryopreserved, and RAS (PfSPZ vaccine) 

for clinical trials (Hoffman et al., 2010). This vaccine has undergone clinical trials in USA, Europe, 

and Africa to assess its safety, immunogenicity, route of administration, and protective efficacy 

(Epstein et al., 2017; Epstein et al., 2011; Jongo et al., 2019; Jongo et al., 2018; Lyke et al., 2017; 

Olotu et al., 2018; Seder et al., 2013; Sissoko et al., 2017; Zenklusen et al., 2018).  

Other techniques have been developed for attenuating the sporozoites to be used as vaccines. These 

include targeted gene deletion and chemoprophylaxis known as genetic attenuated parasites (GAP) 

and chemoprophylaxis with sporozoites (CPS), respectively. Targeted genes in GAP include P52, 

P36, or B9 (involved in liver stage PV formation or sporozoite) and liver stage asparagine-rich 

protein (SLARP; involved in transcriptional regulation for liver stage replication) (Annoura et al., 

2014; Mikolajczak et al., 2014; Van Schaijk et al., 2014; VanBuskirk et al., 2009). While, CPS 

delivers wild-type sporozoites to allow complete development of pre-erythrocytic stages and 

controlling the symptomatic blood stages with chemoprophylaxis, particularly chloroquine (Bijker 

et al., 2013). Both GAP and CPS have undergone clinical trials to assess their safety, 

immunogenicity, route of administration, and protective efficacy (Kublin et al., 2017; Mordmuller 

et al., 2017; Roestenberg et al., 2009; Roestenberg et al., 2011; Spring et al., 2013). Whole 

sporozoite vaccines have shown variable and short-lived protective efficacy such that they are not 

close to deployment for malaria control and treatment (Itsara et al., 2018).  
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(ii) Blood-stage Vaccines   

Naturally acquired immunity (NAI) to malaria arises through repeated exposure to blood-stage 

parasite diversity, generation of a broad antibody repertoire against merozoites and infected 

erythrocytes, and a complex interplay of inflammatory and immuno-regulatory cellular responses 

(Draper et al., 2018). Blood-stage vaccines have generally focused on a handful of well-studied 

merozoite antigens that are required for parasite invasion of erythrocytes. Many potential blood-

stage candidate antigens have been identified but some of the most extensively studied candidates 

in recent clinical trials include apical membrane antigen-1 (AMA1), merozoite surface protein-1 

and -3 (MSP1 and MSP3), rhoptry neck protein 2 (RON2), and glutamate-rich protein (GLURP) 

(Wilson, Flanagan, Prakash, & Plebanski, 2019). However, vaccines based on these antigens have 

failed to attain convincing protective efficacy in clinical trials (Genton et al., 2002; Jepsen et al., 

2013; Laurens et al., 2013; Ogutu et al., 2009; Payne et al., 2016; Sheehy et al., 2012; Sheehy et 

al., 2011; Sirima et al., 2016; Srinivasan et al., 2017; Srinivasan et al., 2011; Srinivasan et al., 

2014; Srinivasan et al., 2013; Theisen, Adu, Mordmuller, & Singh, 2017; Thera et al., 2011). Some 

of the challenges faced by these vaccine candidates include: (a) the high antigen specific antibody 

titres required for protection due to fast kinetics of merozoite invasion or (b) antibody responses 

which cannot cover substantial levels of antigenic polymorphism and/or redundant invasion 

pathways (Draper et al., 2018; Wilson et al., 2019).  

This led to the search of other blood-stage antigens that can overcome these challenges and led to 

the discovery of reticulocyte-binding protein homolog 5 (Rh5) as a vaccine candidate. Rh5 is part 

of a complex that forms an essential interaction with basigin (CD 147) on the erythrocyte surface 

during invasion (Crosnier et al., 2011). There is high level of sequence conservation in P. 

falciparum Rh5 (PfRh5) and natural acquired antibodies to the PfRH5 complex have been 

described in naturally-exposed human populations in Africa and Papua New Guinea (Partey et al., 

2018; Richards et al., 2010; Weaver et al., 2016). Trials in animal models and healthy human 

volunteers showed that PfRh5 has a well-tolerated safety profile that is associated with reduced 

levels of acquiring malaria, with high level of antigen specific antibodies that were inhibitory 

towards multiple parasite strains in vitro (Douglas et al., 2015; Patel et al., 2013; Payne et al., 

2017). Currently, PfRh5 is undergoing phase I clinical trial to assess safety, tolerability, and 

immunogenicity at the Ifakara Health Institute in Bagamoyo, Tanzania.  
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(iii) Transmission-blocking vaccines   

A key factor to the eradication of malaria will be the ability to break the cycle of transmission of 

Plasmodium parasites between its human and mosquito hosts. An approach, such as a drug or 

vaccine, capable of preventing the transmission of the parasite that cause malaria are known as 

transmission-blocking interventions. The concept of transmission-blocking vaccines (TBVs) 

emerged in the 1970s from two seminal studies using animal models (Carter & Chen, 1976; 

Gwadz, 1976). Unlike canonical vaccines that directly protect the individual from infection, TBVs 

aim at preventing the spread of the parasite from an infected individual to a noninfected individual 

by targeting the transmission stages of Plasmodium (Dinglasan & Jacobs-Lorena, 2008). There are 

two types of TBVs with regards to its target: (a) those that interrupt transmission from infected 

humans to mosquitoes by targeting gametocytes, gametes, or ookinetes prior to invasion of 

mosquito midgut wall and (b) those that interrupt transmission from mosquito to humans by 

targeting the sporozoite in the recipient host (Chaudhury et al., 2016; Chowdhury, Angov, Kariuki, 

& Kumar, 2009; Kapulu et al., 2015; Mordmuller et al., 2017; Tachibana et al., 2011; Wu et al., 

2008).  

Research and development on transmission-blocking vaccines has in recent years made significant 

progress. Vaccines that target the gametocyte/gamete surface proteins (such as Pfs230, Pfs48/45, 

HAP2) and macrogamete and ookinete surface protein such as Pfs25, are showing promising 

results (Angrisano et al., 2017; Blagborough et al., 2013; Datta et al., 2017; Kapulu et al., 2015; 

Lee et al., 2016; Tachibana et al., 2011; Talaat et al., 2016). Furthermore, vaccines that interrupt 

the interaction between ookinetes and mosquito midgut ligands such as Alanyl aminopeptidase N 

(APN-1) have also shown promising results (Armistead et al., 2014; Atkinson et al., 2015; 

Dinglasan et al., 2007; Mathias et al., 2012).  

Direct protection of immunized individuals is unlikely the direct outcome of TBVs, rather they 

could have substantial impact in an endemic population of asymptomatic and/or submicroscopic 

carriers. Such vaccines will serve to arrest onward transmission of malaria and thus provide 

protection to the community as other vaccines do through herd immunity (Draper et al., 2018). 

Therefore, current emphasis in TBV development has been on increasing immunogenicity against 

the lead candidate antigens without unduly raising safety concerns (Hoffman et al., 2015).  
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1.1.10 Oxidative Stress 

(i) Oxidative Stress in General 

Oxidative stress can be defined as a disturbance in the balance between the production of free 

radicals (oxidants) and antioxidant defences (Gutteridge & Halliwell, 2018; Sies, 2015; Sies, 

Berndt, & Jones, 2017). A free radical is a molecule that contains one or more unpaired electron(s) 

in its outer orbit (Betteridge, 2000). The unpaired electrons alter the chemical reactivity of an atom 

or molecule, therefore increasing the chemical reactivity of free radicals compared to non-radicals 

(Betteridge, 2000). The free radicals in question here include reactive oxygen species (ROS) and 

reactive nitrogen species (RNS) produced as by-products of cellular metabolism, as well as 

naturally occurring environmental agents (Forrester & Stamler, 2007).  

Under normal physiological conditions, cells are capable of counterbalancing the production of 

oxidants with antioxidants (Klaunig & Kamendulis, 2004). The majority of cellular antioxidants 

are enzymatic in nature such as superoxide dismutase (SOD), catalase, glutathione peroxidase 

(GPx), thioredoxin peroxidase (TPx), or thioredoxin reductase (TrxR) (Betteridge, 2000). 

However, there are some that are non-enzymatic in nature, including compounds such as vitamin 

E, vitamin C, and β-carotene (Clarkson & Thompson, 2000). In certain instances, a cell would 

overproduce ROS and RNS to levels that the capacity of its own antioxidant defences is diminished 

and unable to maintain equilibrium between oxidants and antioxidants. A cell that is in such a state 

is under oxidative stress, which may lead to damage and injury to cellular components if it’s not 

immediately mitigated (Sies, 2015; Sies et al., 2017).   

(ii) Sources of ROS and RNS 

Superoxide anion (O2-∙) produced by one electron reduction of molecular oxygen, is considered as 

the ‘‘primary’’ ROS because it can further react with other molecules in a cell and form 

‘‘secondary’’ ROS either through enzyme- or metal- catalysed reactions (Fridovich, 1986). 

Protonation (addition of H+) of  O2-∙ results in the formation of hydroperoxyl radical (HO2∙), a much 

stronger radical than O2-∙ (Yu, 1994). Upon further protonation, HO2∙ is converted to hydrogen 

peroxide (H2O2), which can also be formed by dismutation of O2-∙ catalysed by the enzyme SOD 

(Yu, 1994). In the presence of reduced metal, particularly Iron (Fe), H2O2 generated from the above 
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reactions can be converted to hydroxyl radicals (∙OH) through the Fenton and Haber-Weiss 

reactions (Table 2.1) (Betteridge, 2000). The hydroxyl radical is an extremely potent radical and 

rapidly interacts with cellular components such as nucleic acids, lipids, and proteins (Betteridge, 

2000).  

Nitric oxide (NO) plays a dual role in the generation of RNS in biological systems; first it's the 

main RNS produced by cells, and on the other hand, it is the main source for other RNS (Martinez 

& Andriantsitohaina, 2009). It is produced from L-arginine and oxygen. The reaction is catalysed 

by the enzyme nitric oxide synthases (NOS) (Squadrito & Pryor, 1998). Three isoforms of NOS 

exist and these are NOS 1 or neuronal NOS (nNOS), NOS 2 or inducible NOS (iNOS), and NOS 

3 or endothelial NOS (eNOS) (Dedon & Tannenbaum, 2004; Martinez & Andriantsitohaina, 

2009). In biological systems, the dominant reactions of NO will be with another free radical to 

generate RNS, and the best-known free radical that reacts with NO is superoxide anion to produce 

peroxynitrite (OONO-) (Radi, 2013, 2018). Under physiological conditions, peroxynitrite is 

unstable and isomerizes to nitrate (NO3-), a chemically inert compound. This reaction was once 

seen as a way of scavenging and neutralizing superoxide anion (Radi, 2013, 2018). Furthermore, 

OONO- is a strong oxidant and has the potential to react with all major classes of biomolecules to 

produce an array of other free radical molecules capable of mediating further cell damage 

(Calcerrada, Peluffo, & Radi, 2011). It undergoes oxidation, nitration, and nitrosation to produce 

NO adducts that can undergo secondary reactions with metals, thiols, and additional targets to give 

further products, often with biological activity and capable of bringing further oxidative damage 

to biological systems (Calcerrada et al., 2011).  

Biological systems are exposed to ROS and RNS through endogenous sources such as from 

mitochondria, inflammatory cell activation, peroxisomes, and cytochrome P450 (CYP450) 

metabolism or exogenous sources such as environmental (xenobiotic) agents, ionizing radiation 

(IR), industrial and pharmaceutical compounds (Klaunig & Kamendulis, 2004; Klaunig, Wang, 

Pu, & Zhou, 2011).  
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Table 2. Pathways for intracellular generation of ROS and RNS 

1. Generation of ROS via reduction of molecular oxygen:  

O2 + e-®O2-∙                                                                                                                                                           

O2-∙ + H2O®HO2∙                                                                                                

HO2∙ + e-H®H2O2                                                                                            

            H2O2 + e- ®OH- + ∙OH                                                                                            

 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

2. Production of reactive nitrogen species:            

            L-Arginine + O2®NO (Nitric oxide) + L-Citrulline                                          

O2-∙ + NO®OONO- (peroxynitrite)                                             

OONO- + CO2®ONOOCO2- (nitrosoperoxycarbonate)             

ONOOCO2-®NO2(nitrogen dioxide) + CO3∙-(carbonate anion radical)  

 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

3. Fenton reaction:  

Fe3+ + O2-∙®Fe2++ O2    

Fe2+ + H2O2®Fe3+ + ∙OH + OH-  

 

(1.9) 

(1.10) 

4. Haber-Weiss reaction:  

O2-∙ + H2O2®O2 + HO2∙+ OH-   

 

(1.11) 

Chemical reactions for the generation of various ROS/RNS intermediates. (1) A cascade of 
chemical reactions for the generation of ROS intermediates in the presence of O2. (2) A 
cascade of chemical reactions for the generation of RNS intermediates in the presence of O2. 
(3) Chemical reactions between a reduced metal (Fe) and ROS intermediates to generate 
more ROS intermediates. (4) A net chemical reaction for the Fenton reaction as shown in (3). 
O2-∙= superoxide anion, HO2∙= hydroperoxyl radical, H2O2= hydrogen peroxide, ∙OH = 
hydroxyl radical, NO = nitric oxide, OONO- = peroxynitrite, ONOOCO2- = nitrosoperoxy 
carbonate, NO2= nitrogen dioxide CO3∙-= carbonate anion radical, Fe2+ = Iron (II) , Fe3+ = 
Iron (III), OH- = hydroxide ion  

(iii) Management of Oxidative Stress 

Substances that reduce the potential ill effect of ROS/RNS are generally grouped in the so-called 

antioxidant defence system (Valko, Rhodes, Moncol, Izakovic, & Mazur, 2006). Antioxidant 

defence systems can be divided into non-enzymatic and enzymatic. These antioxidant defence 

systems are extremely important as they represent the direct removal of ROS/RNS (pro-oxidants), 

thus providing maximal protection to cells. A good antioxidant should have, some if not all, of the 
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following properties/characteristics (Sies, Stahl, & Sevanian, 2005; Valko et al., 2006): (a) 

specifically quench free radicals, (b) chelate redox metals, (c) interact with (regenerate) other 

antioxidants within the “antioxidant network”, (d) have a positive effect on gene expression, (e) 

be readily absorbed, (f) have a concentration in tissues and biofluids at a physiologically relevant 

level, and (g) work in both the aqueous and/or membrane domains.  

Enzymatic antioxidant defence system include SOD, catalase, GPx, and TPx to mention a few 

(Mates, 2000); while non-enzymatic antioxidant defence system include vitamin C (ascorbic acid), 

vitamin E (α-tocopherol), vitamin A (carotenoids), thiol compounds (glutathione (GSH) and 

thioredoxin (Trx)), natural flavonoids, a hormonal product of the pineal gland, melatonin also to 

mention a few (Birben, Sahiner, Sackesen, Erzurum, & Kalayci, 2012). Herein, research was 

carried out in alignment with the objective of the study to evaluate the thiol compounds (Trx and 

GSH) as antioxidant defence systems in An. gambiae midguts following exposure to ROS 

inducers.   

Thiols (Glutathione and Thioredoxin) Systems 

The cellular antioxidant milieu is largely maintained and regulated by the two enzyme-based thiol 

systems: the GSH and Trx system (Lu & Holmgren, 2014; Schafer & Buettner, 2001). In each 

system, an NADPH-dependent flavoenzyme—namely glutathione reductase (GR; EC 1.8.1.7a) 

and TrxR (EC 1.8.1.9) are involved, where both enzymes belong to a family of homodimeric 

pyridine nucleotide-disulfide oxidoreductases that includes enzymes like lipoamide 

dehydrogenase, trypanothione reductase, and mercuric ion reductase (Williams, 1992).  

These systems exist in the thiol-reduced and the disulfide-oxidized forms, GSH/GSSG and 

Trx(SH)2/TrxS2, respectively. These thiol/disulphide couple systems (GSH/GSSG and 

Trx(SH)2/TrxS2) interacts with nearly all physiological oxidants, and have therefore proved to be 

essential cellular antioxidant buffers. The antioxidant capacity of thiol compounds is due to the 

sulphur atom which can easily accommodate the loss of a single electron (Karoui, Hogg, Frejaville, 

Tordo, & Kalyanaraman, 1996). In addition, the lifetime of sulphur radical species thus generated, 

i.e. a thiyl radical RS∙, may be significantly longer than many other radicals generated during the 
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stress. Thereafter, the RS∙ generated may dimerise to form the oxidized non-radical product, GSSG 

or TrxS2.  

Glutathione is a multifunctional intracellular non-enzymatic antioxidant and a major low-

molecular weight thiol in cells (Meister & Anderson, 1983). GSH is a tripeptide, L-g-glutamyl-L-

cysteinyl-glycine, and is synthesized from L-glutamate, L-cysteine, and glycine in two consecutive 

steps catalysed by glutamyl-cysteine synthase and glutathione synthase (Eq. 6.1 and 6.2, 

respectively) (Meister & Anderson, 1983). It is a suitable cellular thiol “redox buffer” because it 

lacks the toxicity associated with cysteine and the GSH/GSSG ratio therefore is a good measure 

of oxidative stress level of a cell (Schafer & Buettner, 2001; Vina et al., 1983). The redox potential 

for the GSSG/2GSH couple is determined by the redox environment in which the couple is 

functioning (Jones et al., 2000). Cellular organelles vary in their redox potentials which determines 

the concentration of GSH compartmentalized in these organelles. The reduced-thiol form, GSH, 

is the predominant form and accounts for >98% of total GSH (Forman, Zhang, & Rinna, 2009). 

Eukaryotic cells have three major reservoirs of GSH; where 80–85% is in the cytosol, 10–15% is 

in the mitochondria, and the remaining small percentage is in the endoplasmic reticulum (Yuan & 

Kaplowitz, 2009). A shift in the level of GSH caused by either its over consumption or synthesis 

due to increased oxidative stress will influence the redox potential. The main antioxidant roles of 

GSH against cellular ROS/RNS are (Masella, Di Benedetto, Vari, Filesi, & Giovannini, 2005):  

(i) GSH is a cofactor of several detoxifying enzymes against oxidative stress, e.g. GPx, GST, 

and etc. 

(ii) GSH participates in amino acid transport through the plasma membrane.  

(iii) GSH directly scavenges ∙OH and 1O2 (Eq. 6.3) and detoxifies H2O2 and ROOH by the 

catalytic action of GPx (Eq. 5.1 and 5.2).  

(iv) GSH is able to regenerate vitamins C and E back to their active forms. GSH can reduce the 

tocopherol radical of Vitamin E directly or indirectly via reduction of semidehydroascorbate 

to ascorbate.  

Thioredoxins are small, ubiquitous thiol proteins with a relative molecular mass of ~12 kDa and a 

redox active cysteine pair within a conserved active site of amino acids WCGPC (Nakamura et al., 

1997). They contain two adjacent sulfhydryl (–SH) groups in its reduced form [Trx(SH)2] that are 
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converted to a disulphide unit in the oxidised form (TrxS2) in the antioxidant reactions (Eq. 6.4 

and 6.5).  The oxidized form is recycled back to the reduced form by the transfer of reducing 

equivalents from NADPH, the reaction catalysed by the enzyme TrxR. The reduction of the 

disulphide back to the dithiol form is catalysed by the NADPH- dependent flavoprotein TrxR. 

Cellular Trx levels are much less compared to GSH, about 100- to 1000- fold less. Previously, it 

was believed that the antioxidant functions of Trx and GSH are clearly separated. However, it has 

been shown that Trx and GSH systems constitute a balanced redox network in which functionality 

can be shared between the constituents to some extent (Gromer, Urig, & Becker, 2004). For 

example, dipterans like Drosophila melanogaster and Anopheles spp lack the enzyme GR (Bauer 

et al., 2003; Kanzok et al., 2001) and the cycling of GSSG back to GSH is catalysed by TrxR, 

ensuring the maintenance of GSH/GSSG ratio. Apart from its antioxidant activity, some of the 

other functions of Trx includes transcription factor regulation, protein binding, and inhibition of 

apoptosis (Mustacich & Powis, 2000).  

L-Glutamate + L-Cysteine®γ-GluCys                                                                               (6.1) 

γ-GluCys + L-Glycine®GSH                                                                                  (6.2) 

2∙OH + 2GSH®GSSG + 2H2O                                                                                (6.3) 

Trx(SH)2 + H2O2®H2O + TrxS2                                                                              (6.4) 

Trx(SH)2 + ROOH®H2O + TrxS2                                                                          (6.5) 

            TrxS2 + NADPH+ + H+®Trx(SH)2 + NADP+                                                       (6.6) 

(iv) Oxidative Stress during Plasmodium Sporogonic Development 

Plasmodium development in Anopheles mosquito midgut is associated with increased levels of 

ROS/RNS. The source of excess ROS/RNS in the mosquito midgut is primarily due to either 

mosquito innate immunity to the developing parasite (endogenous sources) or factors in the 

ingested vertebrate blood meal, such as immune factors or digestion products of haemoglobin 

(exogenous sources). Studies using the murine parasite, P. berghei infecting An. gambiae or An. 

stephensi mosquitoes, have shown that its ookinetes inflicts physical damage to Anopheles midgut 
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epithelial cells while it traverses through them in its journey to reach the basal lamina of the 

midgut. The Anopheles mosquito mounts an immune response to the inflicted physical damage by 

triggering a cascade of events, which include an excess release of ROS/RNS. The excess 

ROS/RNS leads to oxidative stress and can be considered as a “time bomb” because they can have 

fatal consequences to both the invading parasite and epithelial cells (Han & Barillas-Mury, 2002; 

Han et al., 2000; Kumar et al., 2004). However, the invading parasite and epithelial cells can 

survive this time bomb if the excess ROS/RNS levels are immediately dealt with by antioxidant 

mechanisms from both the Plasmodium parasite and Anopheles mosquito. 

Plasmodium parasites and Anopheles mosquitoes have in their arsenal a variety of mechanisms to 

deal with the excess ROS/RNS but use the GSH and Trx systems as their primary line of defence 

against oxidative stress. Previous research studies on this topic have shown how dependant 

Plasmodium parasites are to GSH and TRx systems for their antioxidant defence. These studies 

have shown that mutant Plasmodium parasites with defective component(s) of either the GSH or 

Trx systems were not able to fully develop in the Anopheles midgut compared to wild type 

Plasmodium parasites due to their diminished ability to reduce oxidative stress in their 

environment (Pastrana-Mena et al., 2010; Vega-Rodriguez et al., 2009; Yano et al., 2008). 

Similarly, other studies have shown how parasite’s transcripts or proteins of the GSH and Trx 

system increase when there is an increased ROS/RNS in its environment (Turturice et al., 2013).  

Furthermore, Anopheles mosquitoes have been shown to use various antioxidant mechanisms in 

midgut epithelial cells to reduce the oxidative stress associated with Plasmodium infection. 

Overexpression of antioxidant defence enzymes has been observed in several studies following 

the ingestion of a Plasmodium blood meal (Dimopoulos et al., 2002; Molina-Cruz et al., 2008; 

Peterson & Luckhart, 2006). Other studies have shown how epithelial cells undergo apoptosis and 

get completely removed from the midgut if the excess ROS/RNS due to invading parasite is not 

dealt with (Han & Barillas-Mury, 2002; Han et al., 2000; Kumar et al., 2004). However, Anopheles 

mosquitoes like other dipterans lack the flavoenzyme GR of the GSH pathway and therefore utilize 

instead the Trx system for mitigating oxidative stress (Bauer et al., 2003). Therefore, the Trx 

system is of major importance when it comes to management of oxidative stress by Anopheles 

mosquitoes.  
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(v) Oxidative Stress as a Transmission-Blocking Strategy 

Studies have shown that mosquitoes with increased oxidative stress in their midguts are resistant 

to Plasmodium transmission (Bahia et al., 2013; Goncalves et al., 2012; Molina-Cruz et al., 2008; 

Peterson et al., 2007; Peterson & Luckhart, 2006). The concept here is straightforward; oxidative 

stress in the mosquito midgut is generated post infected blood meal ingestion in anticipation that 

it will be deleterious to the parasites yet tolerable by the mosquito. The stress therefore blocks 

parasite transmission to another individual during subsequent blood meals. Furthermore, oxidative 

stress has been credited as the mode of action of several antimalarials that target blood stage 

parasite in the human host (refer to section 1.1.8). Therefore, it is very plausible that oxidative 

stress could be harnessed as a strategy against Plasmodium while its developing in the mosquito 

midgut. Despite the potential of this strategy, very few antimalarials either in use or in clinical 

development use it. A major challenge is in identifying compounds that would not lead to fitness 

cost to the mosquito while still generating selective toxicity in the midgut that is deleterious to the 

parasite yet tolerable to the mosquito. An oxidative stress strategy associated with fitness cost to 

the mosquito will translate into the mosquito developing compensatory mechanisms to overcome 

the fitness cost and eventual development of resistance (Wang, Pakpour, et al., 2015). Another 

challenge is in identifying compounds and their respective dose regimen that are tolerable and not 

toxic to the human host, and yet maintain its effectiveness in the mosquito host after bloodmeal 

ingestion. The thesis research work described herein is founded on possible application of 

oxidative stress concept for transmission-blocking drug development. The ROS inducing 

compounds, tert-butyl hydroperoxide (tBHP) and Paraquat (Pqt), were used to generate oxidative 

stress in mosquito midguts and their global proteomic responses was assessed, with particular 

interest to the Trx and GSH systems. Furthermore, the global proteomics response was assessed 

to identify pathways that could be used as potential target(s) for future transmission-blocking 

strategies.  

1.2 Statement of the Research Problem  

The Trx system is of great importance in the regulation of oxidative stress in Anopheles 

mosquitoes. Despite this importance, a complete understanding of the Trx pathway in Anopheles 

mosquitoes at the molecular level is missing. Basic biological information regarding the regulation 
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of the components of this pathway under different oxidative conditions is missing. Furthermore, 

the data supporting the time bomb theory and management of oxidative stress in Anopheles 

mosquitoes were obtained using the An. stephensi/An. gambiae-P. berghei system. Refer to section 

1.1.10(iv) for more information on P. berghei invasion of An. stephensi/An. gambiae and 

associated oxidative stress. This vector-parasite combination is not natural and may not necessarily 

reflect human malaria transmission biology in the field. The natural, co-evolved, parasite–vector 

system that is responsible for malaria morbidity and mortality in sub-Saharan Africa is P. 

falciparum/An. gambiae. In this vector-parasite system, P. falciparum is known for being less 

abrasive and more finesse when invading midgut epithelial cells of An. gambiae. Thus, the level 

of epithelial cell destruction associated with their invasion process is low, henceforth, the type and 

extent of the redox response (transcripts and protein levels) may vary from that of An. 

stephensi/An. gambiae-P. berghei.  

1.3 Rationale of the Study 

The absence of GR in Anopheles mosquitoes is compensated by the Thioredoxin pathway, where 

the thiol Trx-1 is pivotal component of it. Due to this importance, the thiol Trx-1 may act as the 

cellular redox sensor, where a change in the cell’s redox status is reflected in its expression at both 

transcript and protein levels. The study aimed to prove this by looking at the transcript and protein 

expression levels of Trx-1 and other Trx pathway transcripts/proteins under different oxidative 

conditions.  

Furthermore, different ROS inducers may elicit different responses to oxidative stress. Conversely, 

different doses of the same ROS inducer may elicit different responses to oxidative stress. The 

proteomic profile in An. gambiae midgut epithelial cells was investigated under different oxidative 

stress conditions of two ROS inducers, Pqt and tBHP. This would determine if the response to 

oxidative stress in An. gambiae midgut epithelial cells is blanket or tailored to the ROS inducer 

used. This would shed more light on the translational application of oxidative stress as a 

transmission-blocking strategy. 

Thirdly, Plasmodium ookinete invasion of Anopheles mosquitoes is quick happening within 15 

minutes. Furthermore, P. falciparum ookinete invasion of Anopheles midgut cells is subtle and not 

associated with extensive injury to the epithelial cells compared to P. berghei. This injury is 
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responsible for some of the increased oxidative stress observed in Anopheles midgut cells at this 

particular stage. The redox response by Anopheles mosquitoes to this oxidative stress is crucial as 

it could determine whether the mosquito survives this insult or not. The An. gambiae mosquitoes’ 

response to P. falciparum midgut invasion was investigated by assessing the transcript profile of 

9 Trx- and GSH-dependent genes. Furthermore, the P. falciparum midgut invasion response was 

compared for similarity to the response of An. gambiae midguts to oxidative stress under different 

conditions. Concordance in the response (at transcript and protein levels) to oxidative stress from 

various sources is of great importance as it could lead to the identification of conserved regulatory 

elements that could be used as targets for development of transmission-blocking drugs. 

Therefore, this study aimed to better understand the redox regulation in An. gambiae mosquitoes 

during P. falciparum sporogonic development and provide novel insights into the dynamics of the 

host-parasite interactions between this vector-parasite system. These novel insights can be further 

be translated into strategies that can developed into drugs or vaccines that target and stop the 

development of Plasmodium in this mosquito eventually leading to a stop in the transmission of 

Malaria.  

1.4 Objectives of the Study 

1.4.1 General Objective 

To investigate the differential response of An. gambiae midgut epithelial cells to oxidative stress 

by assessing the transcript and protein expression levels under varied oxidative stress conditions, 

with particular interest to the Trx and GSH pathway. 

1.4.2 Specific Objectives 

(i) To characterize the transcript and protein expression levels of AgTrx-1 in An. gambiae 

  midgut epithelial cells under different oxidative conditions.  

(ii) To characterize the proteomic profiles of An. gambiae midgut epithelial cells under 

  different oxidative conditions.  

(iii) To characterize the Trx- and GSH-dependent transcript profile in An. gambiae midgut 
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 epithelial cells during P. falciparum ookinete invasion.  

1.5 Hypotheses 

This study looked at oxidative stress management in the midguts of Anopheles mosquitoes during 

the first 24 hours of Plasmodium sporogonic development. The research question investigated was, 

what is the response of midgut epithelial cells, at transcript and protein levels, to oxidative stress 

with particular interest to the Trx and GSH systems?  

(i) Null hypothesis (Ho): There is no significant difference in the response of the Trx and 

  GSH systems to different oxidative stress conditions.  

(ii) Alternative hypothesis (Ha): There is a significant difference in the response of the Trx 

 and GSH systems to different oxidative stress conditions.  

1.6 Significance of the Study 

In order to move towards malaria elimination and eradication, more and more interventions that 

reduce the burden of the disease will be of great advantage. Currently, malaria efforts are greatly 

hindered by the development of resistance in Anopheles to insecticides and in Plasmodium to 

antimalarials as described in sections 1.1.7 and 1.1.8, respectively. New classes of insecticides and 

antimalarials without any resistance to Anopheles and Plasmodium, respectively are needed in 

order to shift the balance in favour of malaria control efforts. This study revealed novel insights 

on redox homeostasis in the An. gambiae midgut, which can aid in the development of 

transmission-blocking strategies, in particular a drug. Transmission-blocking strategies disrupt the 

development of Plasmodium whilst in Anopheles and have the advantage of reduced chances of 

resistance development in the mosquito as they are not associated with any fitness costs. However, 

the likelihood of development of resistance in the parasite is possible but substantially slowed 

down as a TBD would be an additional arsenal in the fight against malaria. An additional drug 

against Plasmodium would increases number of drugs that the parasite needs to develop resistance 

against in order to overcome its deleterious effects.  
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1.7 Delineation of the Study 

In this study, only the expression levels of AgTrx-1 transcript and protein in An. gambiae midgut 

epithelial cells under different conditions of oxidative stress induced by tBHP was considered. 

Secondly, the global proteomic profile in An. gambiae midgut epithelial cells under different 

oxidative stress conditions of the induced by Pqt and tBHP. This was done by first evaluating 

enriched proteins in the experimental vs control group with canonical functions in the regulation 

of oxidative stress. Then, this was followed by an evaluation of enriched proteins in experimental 

vs. control group with non-canonical functions in the regulation of oxidative stress and determine 

their association with regulation of oxidative stress and redox homeostasis. Lastly, the profile of 

Trx- and GSH- dependent transcripts in An. gambiae midgut cells at 24 hours post infected blood 

meal ingestion (i.e. during P. falciparum ookinete invasion) was considered.  

On the contrary, some of the aspects were not considered in the scope of this study. One, the study 

focused only on the transcript and protein expression levels of AgTrx-1. Other Trx proteins such 

as Trx-2, Trx-3, Trx-4 were not considered in this study because the background information from 

previous studies pointed out on the importance of Trx-1 over the other Trx pathways components 

in the regulation of oxidative stress in An. gambiae. Furthermore, the availability of only AgTrx-1 

antiserum necessitated that the focus of the study should be on Trx-1 over the other Trx pathway 

transcript and proteins. Secondly, only proteins that were enriched following Pqt and tBHP 

treatment were the ones evaluated under this study. It is entirely plausible that different proteins 

would have been enriched if different ROS inducers were used. Thirdly, Pqt induced oxidative 

stress was only evaluated at the 8 hours timepoint as this coincided with essential Plasmodium 

biology during sporogonic development in mosquitoes. Other timepoints prior or after the 8 hours 

timepoint were not the scope of this study.  Lastly, the study considered only the 24 hours timepoint 

for evaluation of overexpressed Trx- and GSH-dependent transcripts following P. falciparum 

blood meal ingestion. Other time points prior to the 24 hours mark were not included in the scope 

of this study. 
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Paraquat mediated oxidative stress in Anopheles gambiae mosquitoes is regulated by an 
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2.0 Abstract 

Paraquat is a potent superoxide (O2-∙)-inducing agent that is capable of inducing an oxidative 

imbalance in the mosquito midgut. This oxidative imbalance can super-stress the malaria parasite, 

leading to arrested development in the mosquito midgut and reduced transmission. While several 

studies have explored the effect of paraquat on malaria parasites, a fundamental understanding of 

the mosquito response to this compound remains unknown. Here, we quantified the mosquito 

midgut proteomic response to a paraquat-laced sugar meal and found that An. gambiae midguts 

were enriched in proteins that are indicative of cells under endoplasmic reticulum (ER) stress. We 

also carried out qRT-PCR analyses for nine prominent thioredoxin (Trx) and glutathione (GSH)-

dependent genes in mosquito midguts post P. falciparum blood meal ingestion to evaluate the 

concordance between transcripts and proteins under different oxidative stress conditions. Our data 

revealed an absence of significant upregulation in the Trx and GSH-dependent genes following 

infected blood meal ingestion. These data suggest that the intrinsic tolerance of the mosquito 

midgut to paraquat-mediated oxidative stress is through an ER stress response. These data indicate 

that mosquitoes have at least two divergent pathways of managing the oxidative stress that is 

induced by exogenous compounds, and outline the potential application of paraquat-like drugs to 

act selectively against malaria parasite development in mosquito midguts, thereby blocking 

mosquito-to-human transmission. 

2.1 Introduction 

Malaria, caused by the protozoan parasite Plasmodium, remains a major global public health 

problem despite extensive investment in the control and elimination of this disease. A major gap 

in knowledge in this field is our understanding of the various processes that occur during parasite 

transmission through its insect vector, the Anopheles mosquito. Following Plasmodium infected 

blood meal ingestion by Anopheles mosquitoes, the parasite undergoes an intricate developmental 

stage in the mosquito. Plasmodium gametocytes in the ingested blood fuse and undergo sexual 

reproduction to form a zygote that shortly thereafter transforms into a motile ookinete. The 

ookinete then leaves the blood bolus to invade and traverse the mosquito midgut epithelium to its 

basal lamina side where it differentiates into an oocyst. The oocyst grows in size and undergoes 

sporogony to produce thousands of sporozoites. Once the oocyst matures, it ruptures and releases 
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the sporozoites into the haemocoel, where they are passively transported to the salivary glands and 

invade them. The mosquito then re-establishes the cycle in the vertebrate host by transmitting the 

sporozoites through its saliva as it blood feeds (Baton & Ranford-Cartwright, 2005).  

The success of Plasmodium is in part due to the fact that the parasite has evolved a balance with 

its insect host. Disrupting this balance could lead to new interventions that can reduce, if not 

completely block malaria transmission. Plasmodium parasite development in Anopheles 

mosquitoes is associated with excessive amounts of ROS and RNS from several sources. These 

sources include vertebrate immune factors present in the ingested blood (Lensen et al., 1997; 

Naotunne et al., 1993), digestion of haemoglobin (Graca-Souza et al., 2006; Peterson et al., 2007), 

and the mosquito’s innate immunity due to invasion of its midgut epithelial cells by the parasite 

(Han & Barillas-Mury, 2002; Han et al., 2000; Kumar et al., 2004). Oxidative stress could be fatal 

to cells if not immediately dealt with due to its ability to cause damage to cellular macromolecules 

such as proteins, cell membranes, and nucleic acids (Avery, 2011). 

At the cellular level, most organisms depend on the Thioredoxin (Trx) and Glutathione (GSH) 

systems as a prominent line of defence against oxidative stress. For example, in Plasmodium, the 

absence or deficiency of an antioxidant gene, e.g. glutathione reductase (GR) severely affects the 

development of the parasite in the insect host (Pastrana-Mena et al., 2010; Vega-Rodriguez et al., 

2009). Interestingly, Anopheles mosquitoes, like other dipterans, lack the GR and compensate by 

utilizing the Trx system to recycle GSSG to GSH as shown in Fig. 3 (Kanzok et al., 2001) This 

emphasizes the importance of the Trx system in oxidative stress regulation in Anopheles 

mosquitoes. Thus they regulate proteins of the Trx system to protect midgut epithelial cells against 

oxidative stress, specifically when associated with infection by the malaria parasite (Molina-Cruz 

et al., 2008; Peterson & Luckhart, 2006).  
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Figure 3. Interplay of redox systems in Plasmodium and mosquito. ROS/RNS = reactive 
oxygen species/reactive nitrogen species, GR = glutathione reductase, FAD = 
flavin adenosine dinucleotide, NADPH = reduced nicotinamide dinucleotide 
phosphate, TrxR = thioredoxin reductase, SOD = superoxide dismutase, TPx = 
thioredoxin peroxidase, CAT = Catalase, and Tlp = thioredoxin-like proteins  

A basic understanding of redox homeostasis in An. gambiae midgut epithelial cells under different 

oxidative conditions and during P. falciparum ookinete invasion is missing and such information 

can potentially guide the development of new malaria transmission-blocking drugs. Existing data 

on redox homeostasis in the Anopheles mosquito midgut due to Plasmodium ookinete invasion has 

been largely generated using the P. berghei-An.stephensi/An. gambiae parasite-vector model, 

which is not a natural parasite-vector system of malaria transmission. The natural, co-evolved, 

parasite-vector system responsible for malaria morbidity and mortality in sub-Sahara Africa (SSA) 

is P. falciparum-An. gambiae. The ROS inducer Pqt (1,1'-dimethyl-4,4'-bipyridylium di-chloride) 

upregulates antioxidant responses in P. berghei ookinete in vitro (Turturice et al., 2013), 

suggesting that Pqt-associated oxidative stress can be exploited as a transmission-blocking 

strategy. We hypothesize that the mosquito vector can mitigate the extra ROS produced following 

ingestion of Pqt with a bloodmeal, permitting selective toxicity against malaria parasites during 

the first 24 hours following ingestion of infected blood. To explore the feasibility of this proposed 

transmission-blocking strategy, we used a quantitative proteomic approach to profile the organ 
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(midgut)-level response of An. gambiae mosquitoes to Pqt-induced oxidative stress. To evaluate 

the concordance between transcripts and proteins under different oxidative conditions, we 

measured the expression profile of Trx- and GSH-dependent genes in An. gambiae midguts 24 

hours post P. falciparum blood meal ingestion.  

2.2 Materials and Methods 

2.2.1 Mosquito Rearing, Experimental Treatments, and ROS Induction Assays 

An. gambiae (KEELE strain) mosquitoes were used for all the experimental treatments. These 

mosquitoes were maintained in an insectary at the Johns Hopkins Malaria Research Institute 

(JHMRI), kept at 26°C and 70% humidity with 12 hours light and dark cycles and supplemented 

with 10% sucrose solution. 

ROS induction (oxidative stress) assays were performed using in vivo and in vitro studies. Direct 

membrane feeding assays (DMFA) with 50-75 pre-starved An. gambiaefemale mosquitoes (4-7 

days old). An ATP-saline solution [150 mM NaCl, 10 mM NaHCO3 pH 7.0] and 1 mM ATP 

(Billingsley & Rudin, 1992; Galun, Avi-Dor, & Bar-Zeev, 1963; Moskalyk, Oo, & Jacobs-Lorena, 

1996) added as a phagostimulant containing the following treatments: 10% sucrose solution 

(control group) or 1 mM Pqt (treatment group) was prepared to a 2x concentration. To track uptake, 

an equivalent volume of colored water (artificial red food color) was added to the experimental 

groups and then delivered directly into glass, water-jacketed membrane feeders warmed to 37°C. 

Mosquitoes were allowed to feed for 30-45 minutes. The fed mosquitoes were kept at 26°C, 70% 

humidity for 8 hours and maintained on sugar (10% sucrose) and water. The colored water in the 

treatments aided the selection of only those mosquitoes that fed on the solution. The artificial food 

color used did not contain any ingredients known to either favor or hinder the production of 

ROS/RNS. The midguts were dissected from 50 fully fed mosquitoes per experimental group and 

transferred into 200 μL 1x PBS on ice. All of the 1x PBS was removed and the samples were stored 

at -80°C until further liquid chromatography-tandem mass spectrometry LC-MS/MS analysis. 

These experiments were replicated three times using independent biological cohorts of mosquitoes 

to ensure reproducibility. 
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Standard membrane feeding assays (SMFA) used pre-starved 50-75 An. gambiae female 

mosquitoes (4-7 days old) per treatment group. P. falciparum (NF54) gametocyte cultures (15–18 

days post-initiation) were pelleted and diluted to 1.0% gametocytemia with human blood that had 

been washed with RPMI 1640 (Thermo Fisher Scientific) and brought up to 50% hematocrit with 

normal AB serum. Gametocytemic blood was kept at 37°C until feeding. During feeding, 200 μL 

of gametocytemic blood (experimental treatment), human blood at 50% hematocrit (blood control 

treatment), and 10 % sucrose solution (sugar control treatment) were delivered directly into glass, 

water-jacketed membrane feeders warmed to 37°C. Mosquitoes were allowed to feed for 30-45 

minutes. After blood feeding, non-blood fed mosquitoes were removed from each treatment group 

and the fed mosquitoes were maintained on sugar and water at 26°C and 70% humidity (to assure 

survival and prevent desiccation) for 24 hours prior to midgut dissections. Midguts were dissected 

into TRIzol reagent (Life Technologies, Carlsbad, CA) for total RNA extraction. These 

experiments were replicated three times using independent biological cohorts of mosquitoes.  

2.2.2 Extraction, Solubilization, and Digestion of Proteins 

Prior to LC-MS/MS analysis, experimental groups (50 midguts/sample) were processed as 

follows. Total protein lysate was prepared by lysing the midgut samples with 45 μL of SDST-lysis 

buffer (4% SDS (w/v), 100 mM Tris/HCl, 0.1 M DTT pH 7.6) and boiled at 95°C for 5 minutes. 

An aliquot of the protein lysate (30 μL) was used for protein digestion according to the Filter-

Aided Sample Preparation (FASP) protocol (Wisniewski, Zougman, Nagaraj, & Mann, 2009) 

using a 10 kDa molecular weight cut-off filter (Tao, King, et al., 2014; Tweedell, Tao, & 

Dinglasan, 2015) (EMD Millipore, Billerica, MA). Acidified tryptic peptides from following 

FASP treatment were desalted using an HPLC C18 column on an Agilent 1200 HPLC system 

(Agilent Technologies, Santa Clara, CA) (Tao, King, et al., 2014; Tweedell et al., 2015). 

Concentration of the peptides following FASP was estimated using protein digest standards whose 

concentrations, as determined by BCA, were known (Tao, King, et al., 2014; Tweedell et al., 

2015).  

2.2.3 Online 2D LC-MS/MS Analysis 

Peptide products desalted and digested by the FASP protocol were dissolved in loading buffer 

(97.9% water, 2% CAN, and 0.1% formic acid (FA)) and ~ 20 μg was injected to an online 2D 
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HPLC-MS/MS system, using the exact method as described previously and briefly detailed below 

(Tao, King, et al., 2014; Tao, Ubaida-Mohien, et al., 2014; Tweedell et al., 2015). The online 2D 

HPLC-MS-MS system was constructed by integrating one SCX column (150 μm i.d. x 2 cm length 

PolySULFOETHYL ATM, 5 μm 300 Å, PolyLC INC) into an Agilent LC-MS system comprised 

of a 1200 LC system coupled to a 6520 QTOF via an HPLC Chip Cube interface. For the online 

SCX fractionation, in the first dimension peptides were loaded into the SCX column at 1.8 μl/min 

and the peptides were eluted using the autosampler by injecting 6 μl of each increasing salt 

concentration (0, 15, 30, 45, 60, 120, 160, and 300mM NaCl in 2% ACN/0.1% FA) followed by 

one injection of 500 mM NaCl in 2% ACN/0.1% FA to wash the column. The salt elution was 

captured by a C18 enrichment column integrated into the Agilent Polaris-HR-Chip-3C18 chip (360 

nL, 180 Å C18 trap with a 75 μm i.d., 150 mm length, 180 Å C18 analytical column). In the second 

dimension, with the valve switched and the RPLC gradient started, the peptides were eluted from 

the enrichment column and separated by a C18 analytical column. Elution of peptides from the 

analytical column was performed using a gradient starting at 97% A (A: 99.9% water, 0.1% FA) 

at 300 nL/min. The mobile phase was 3–10% B (B: 90% ACN, 9.9% water, 0.1% FA) for 4 min, 

10–35% B for 56 min, 35–99% B for 2 min, and maintained at 99% B for 6 min, followed by re-

equilibration of column with 3% B for 10 min. Data-dependent (autoMS2) MS acquisition was 

performed by an Agilent 6520 QTOF at 2 GHz. Precursor MS spectra were acquired from m/z 315 

to 1700, and the top four peaks were selected for MS/MS analysis. Product scans were acquired 

from m/z 50 to 1700 at a scan rate of 1.5 spectra per second. A medium isolation width (~4 amu) 

was used, and a collision energy of slope 3.6 V/100 Da with a 2.9 V offset was applied for 

fragmentation. A dynamic exclusion list was applied with precursors excluded for 0.50 min after 

two MS/MS spectra were acquired.  

2.2.4 Database Searching and Label-free Quantification Analysis 

All the LC-MS/MS raw data were converted to Mascot generic format (.mgf) by Agilent 

MassHunter Qualitative Analysis B.04.00. The data acquired was used to search the VectorBase 

Anopheles gambiae protein FASTA sequence database (VectorBase, http://www.vectorbase.org, 

Anopheles gambiae PEST, AgamP4.2.) for peptide sequence alignments. The search engine used 

for the search was MASCOT version 2.5 with the following parameters: precursor ion mass 

tolerance of 50 ppm, fragment ion mass tolerance of 0.2 Da, carbamidomethylation of cysteine 
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and oxidation of methionine residues set as fixed and variable modifications respectively. Peptides 

were searched using fully tryptic cleavage constraints, and up to two internal cleavage sites were 

allowed for tryptic digestion. The MASCOT search results were exported as .DAT format and then 

imported into the Scaffold software (version 4.4.5, Proteome Software) for curation, label-free 

quantification, analysis, and visualization. Overall, protein false discovery rates of less than 1% 

and peptide false discovery rates of less than 1% were obtained with Scaffold filters, and each 

protein had ≥ 2 unique peptides. Identified proteins were clustered to remove redundancy. Proteins 

were clustered together if there was a peptide identification shared between them, because this 

indicates substantial sequence similarity, and the protein with the greatest number of peptides 

identified was considered the unique protein identification from that group. The data analysis 

pipeline meets all MIAPE standards (Taylor et al., 2007) and the detailed peptide data can be found 

in Appendix 1.  

2.2.5 qRT-PCR 

Total RNA was extracted from samples of in vivo studies with SMFA using Trizol reagent (Life 

Technologies) according to the manufacturer’s protocol. Extracted RNA was checked for purity 

and concentration using the Nanodrop 2000 UV-Vis spectrophotometer (Thermo Fisher Scientific, 

Wilmington, DE). Complimentary DNA (cDNA) was synthesized using the RevertAid First 

Strand cDNA Synthesis Kit (Thermo Fisher Scientific, Grand Island, NY). Quantitative RT-PCR 

was performed using SYBR Green Master Mix (Applied Biosystems, Carlsbad, CA) on a 

StepOnePlus Real-Time PCR System (Applied Biosystems).  

Relative transcript levels of the Thioredoxin system (Trx-1, Trx-2, TrxR, TPx-1, and PrxV) and 

Glutathione system (Grx-1, GSTD1, GPx, and GS,) were determined using gene-specific primers 

and cycling conditions as per manufacturer’s protocol. Expression levels were calculated using the 

2-ΔΔCt method (Livak & Schmittgen, 2001) relative to the An. gambiae ribosomal protein RpL32 

(AgRpL32; AGAP002122) gene, which was amplified using AgRpL32 F 5’- 

GCCGAAGATTGTGAAGAAGC-3’ and AgRpL32 R5’- GCACCCGATTGTCAATACCT-3’. 

All qRT-PCR reactions were done in triplicate. Specific primer sequences of the transcripts can be 

found in Appendix 2 
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2.2.6 Statistical Analyses 

The Student’s t-test comparing quantifiable spectral values between treatment groups was used to 

identify differentially expressed proteins. For qRT-PCR analyses, comparisons of expression 

levels of targeted transcripts relative to each other were carried out using multiple Student’s t-test 

followed by Holm-Šidak correction of t-scores to adjust for multiple tests. All statistical analyses 

utilized the software GraphPad Prism (version 6.0e). The P-values of < 0.05 were considered 

statistically significant. All experimental reactions used at least three independent biological 

replicate samples.  

2.3 Results 

The presence of a bloodmeal itself prevents the specific, accurate mass spectrometry-based 

proteomic analysis of the midgut response to Pqt alone from a Pqt-laced bloodmeal. Given this 

limitation, we sought to identify the midgut’s response to Pqt alone considering that the bloodmeal 

induces a specific antioxidant response by the mosquito midgut. The assumption is that the 

identified processes would be in addition to those predicted to be mounted by the midgut in order 

to maintain redox homeostasis during blood feeding and digestion. With this in mind, we used a 

label-free quantitative proteomic approach to determine the midgut-level regulation of the 

response to Pqt-induced oxidative stress by An. gambiae mosquitoes; thereby complementing 

several studies that have explored the effect of Pqt on malaria parasites.  

2.3.1 Global Proteomic Profiles of Midgut Epithelial Cells under Pqt-induced  

 Oxidative Stress are Largely Conserved 

We captured the proteomic profiles of An. gambiae midguts dissected 8 hours after ingestion of a 

1 mM Pqt-laced sugar meal. This concentration of Pqt was found to induce oxidative stress without 

noticeable fatal damage to the midgut epithelial cells, evident in the absence of loss of tissue 

structure (data not shown). We analysed the global proteomic profile in midgut epithelial cells 

treated with Pqt (experimental group) and sugar (control group). A total of 631 quantifiable 

proteins were identified by label free techniques with a protein false discovery rate of <1% and 

normalization based on area under the curve as shown in Appendix 3. Of this, 578 proteins (91.6%) 

were shared between Pqt- and sugar-treated midguts, 24 (3.8%) were found only in Pqt-treated 
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midguts, and 29 (4.6%) were found only in sugar-treated midguts as shown in Fig. 4A. Antioxidant 

groups of proteins were organized from the 631 identified proteins, and this included heat shock 

proteins (HSP), cytochrome P450s (CYP), Trx-dependent, and GSH-dependent as shown in 

Appendix 3. The quantitative proteomic profiles of Pqt- and sugar treatment groups identified 20 

out of the total 631 (0.031%) proteins that were differentially expressed between the groups based 

on spectral counts (P ≤ 0.05; Student’s t-test) as shown in Fig. 4B and Appendix 3. It was found 

that 11 out of the 20 (55%) proteins enriched (highly expressed) in Pqt-treated midguts. Annotated 

functions revealed that 7 (63.6%) of these proteins are involved in ER stress response or cellular 

detoxification machinery as shown in Table 3 below.  

Table 3. Proteins enriched in Pqt-treated midguts that are directly involved in mitigation of 
  the induced oxidative stress  

Protein description Fold 
change P-value Function 

ABCC8 (AGAP008437)  
ATP-binding cassette transporter 
(ABC transporter) family C member 8 

4.37 0.015 
Upregulated in bendiocarb resistant An. 
gambiae, a detoxification gene (Antonio-
Nkondjio et al., 2016) 

 
ALDH6A1 (AGAP002499) 
Methylmalonate-semialdehyde 
dehydrogenase (acylating), 
mitochondrial  

4.28 0.035 
Classified as environmental and oxidative 
stress proteins (Sonenshine et al., 2011) 
 

Ca-P60A (AGAP006186) 
Calcium-transporting ATPase 
sarcoplasmic/endoplasmic reticulum 
type 

5.99 0.039 

Function impaired by oxidative stress 
(Lafleur, Stevens, & Lawrence, 2013; 
Park, Zhou, Lee, Lee, & Ozcan, 2010; X. 
Tong, Kono, & Evans-Molina, 2015; 
XiaoYong Tong, Evangelista, & Cohen, 
2010) 

CRT (AGAP004212) Calreticulin 1.64 0.017 

Ca2+ homeostasis (Ihara, Kageyama, & 
Kondo, 2005; H. Liu et al., 1997; 
Ruddock & Molinari, 2006) and pro-
apoptotic protein (Zhang et al., 2014) 

EIF2S1 (AGAP011190) 
Eukaryotic translation initiation factor 
2 subunit alpha  

1.69 0.034 

Conserve in eukaryotes, the 
phosphorylation form of this protein 
serve as a signal of cell survival by 
attenuating translation of mRNA (Back et 
al., 2009; Harding, Zhang, & Ron, 1999; 
Knutsen et al., 2015) 

ODC (AGAP011806) 
Ornithine decarboxylase  2.72 0.043 Upregulated after ivermectin-containing 

blood meals (Seaman et al., 2015) 
 
SDHB (AGAP007309) 
Succinate dehydrogenase (ubiquinone) 
iron-sulfur subunit  

4.23 0.045 Ferredoxin balance system 

The data is summarised into four columns. In the first column, the name of the protein is 
described with its abbreviated form and accession number. The second column shows the 
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fold change in enrichment level for each of the described proteins. In the third column, P-
value (P< 0.05) results of Student’s t-test on the fold change in enrichment level are reported 
for each of the described proteins. The fourth column gives a brief summary of the function 
of the described protein, with any associated references  
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Figure 4.  Comparative label-free quantitative proteomic analyses of the An. gambiae 
midgut responses to the ROS-inducer Paraquat (Pqt). (A) Global distribution 
of proteins in midguts under Pqt and sugar solution treatment. Midgut lysates 
from female Anopheles gambiae mosquito midguts treated with 1mM 
concentration of Pqt and sugar (10% sucrose) solution were subjected to a LC-
MS/MS analysis to identify expressed proteins. Of the 631 proteins quantified, 
3.8% were specific to Pqt-treated midguts, 4.6% partitioned to sugar-treated 
midguts, and 91.6% of the total proteins were conserved in both Pqt and sugar 
treated midguts. (B) Protein identification comparisons between treatment 
groups in An. gambiae midguts. Midgut lysates from female An. gambiae 
mosquito midguts treated with Pqt were subjected to a LC-MS/MS analysis to 
identify expressed proteins. Volcano plots of quantifiable protein comparisons 
in Pqt vs. sugar (10% sucrose) solution treated midguts. Significant fold change 
was calculated with Student’s t-test with P-value ≤ 0.05. The red line indicates 
a P-value = 0.05. Annotation of significantly enriched proteins is shown 
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2.3.2 Antioxidant Proteins are not Involved in the Regulation of Pqt-induced 

 Oxidative Stress in An. gambiae Midguts 

A detailed examination of proteins identified as antioxidants previously described in section 2.3.1 

was performed. Cytochrome P450 6Z2 (CYP6Z2; AGAP008212) was found enriched by 13.86-

fold (P-value = 0.023) in Pqt-treated midguts and was the only CYP450 protein whose enrichment 

was statistically significant. We observed that CYP9J4 (AGAP012292) and CYP4H24 

(AGAP013490), were also enriched (>1.5-fold), but their enrichment was not deemed statistically 

significant as shown in Appendix 3. Although thioredoxin reductase (TrxR; AGAP000565) and 

thioredoxin peroxidase 4 (TPx-4; AGAP011824) were found enriched (> 1.5-fold) in the Pqt-

treated mosquitoes their enrichment was not deemed statistically significant as shown in Appendix 

3. Glutathione S-transferase epsilon class 3 (GSTE3 AGAP009197), glutathione S-transferase 

theta class 1 (GSTT1; AGAP000761), and glutathione S-transferase delta class 11 (GSTD11; 

AGAP004378) were the only GSH-dependent proteins found enriched (>1.5-fold), but their 

enrichment was also not deemed statistically significant as shown in Appendix 3. We did not 

identify any significant enrichment in any of the identified HSPs. 

2.3.3 Evidence of an Endoplasmic Reticulum (ER) Stress Response are Observed  

 in Pqt-treated Midguts 

We noted that ER stress regulating proteins were enriched in Pqt-treated midguts relative to sugar-

treated midguts. This includes calreticulin (CRT; P-value = 0.017), eukaryotic translation initiation 

factor 2 subunit alpha (EIF2S1; P-value = 0.034) and calcium-transporting ATPase 

sarcoplasmic/endoplasmic reticulum type (Ca-P60A; P-value = 0.039), which had fold changes of 

1.8-4, 1.69-, and 5.99-fold, respectively as shown in Fig. 4B and Table 3. 

2.3.4 Proteins Involved in the Detoxification Process are Enriched in Pqt-treated Midguts 

ATP-binding cassette transporter family C member 8 (ABCC8; AGAP008437) was found 

enriched by 4.37-fold (P-value = 0.015) in the Pqt-treated midguts as shown in Fig. 4B and Table 

3. ATP-binding cassette (ABC) transporters belong to a superfamily of transport system members 

that efflux drugs, toxic, endo and xenobiotic compounds from cells (Jones & George, 2004; Ter 

Beek, Guskov, & Slotboom, 2014). Ornithine decarboxylase (ODC), was another detoxification 
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protein found enriched in the Pqt-treated midguts (2.72-fold, P-value = 0.043) as shown in Fig. 4B 

and Table 3. OCD catalyses the first-rate limiting step in polyamine synthesis and is upregulated 

in response to stress.  

We also found mitochondrial methylmalonate-semialdehyde dehydrogenase ALDH6A1 

(AGAP002499) enriched by 4.28-fold (P-value = 0.035) in the Pqt-treated midguts as shown in in 

Fig. 4B and Table 3. A contig from the male accessory gland/testis vas deferens (MAG/TVD) of 

tick, Dermacentor variabilis, was identified through alignment to be ALDH6A1 and known to 

protect against environmental stress (Sonenshine et al., 2011). Succinate dehydrogenase 

(ubiquinone) iron-sulphur subunit (SDHB; AGAP0031) was found enriched in the Pqt-treated 

midguts (4.23-fold, P-value = 0.045) as shown in Fig. 4B and Table 3. SDHB is one of the 4 

subunits of the mitochondrial succinate dehydrogenase complex (SDH), a key enzyme that links 

the tricarboxylic acid cycle (TCA) and electron transport chain (ETC) (Ackrell, 2000; Oyedotun 

& Lemire, 2004). SDHB transfers electrons from flavin adenosine dinucleotide (FADH2) to 

ubiquinone (CoQ) in the inner mitochondrial membrane. 

2.3.5 P. falciparum Ookinete Invasion of An. gambiae Midguts does not Upregulate Trx- 

  and GSH-dependent Genes 

P. berghei ookinete invasion of Anopheles mosquitoes is accompanied by an increased production 

in ROS/RNS (Han & Barillas-Mury, 2002; Han et al., 2000; Kumar et al., 2004). Since the 

proteomic profiling suggested that several of the Trx- and GSH-dependent proteins were not 

upregulated following Pqt treatment we carried out qRT-PCR analysis to look closely at the 

regulation of nine Trx- and GSH- dependent genes in An. gambiae midguts following the ingestion 

of P. falciparum infected blood meal as shown in Table 4. The Trx- and GSH-dependent transcripts 

chosen were recently identified in various studies to be involved in the regulation of oxidative 

stress or in the detoxification of xenobiotic compounds. Multiple statistical analyses were carried 

out to identify transcripts that were significantly upregulated in Trx and GSH pathways 24 hours 

post infected blood meal ingestion as shown in Appendix 4. We found no significant upregulation 

of any of the Trx- and GSH-dependent transcripts investigated as shown in Table 4.  
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Table 4. A list of Trx and GSH-dependent transcripts evaluated following P. falciparum 
  infected blood meal ingestion 

Transcript/Accession ID Function/Annotation 
Response to 

P. falciparum blood 
meal ingestion. 

Thioredoxin-1 (Trx-1; AGAP009584) 
Dithiol-disulfide exchange reaction 
with GSSG to produce GSH (Kanzok 
et al., 2001) 

None 
(P-value = 0.308 8) 

Thioredoxin-2 (Trx-2; AGAP007201) 
Antioxidative function as electron 
donor to TPx (Bauer, Kanzok, & 
Schirmer, 2002) 

None 
(P-value = 0.730 9) 

Thioredoxin reductase (TrxR; 
AGAP000565) 

Key enzyme of the Trx system 
responsible for replenishing Trx-1 
(Bauer et al., 2003) 

None 
(P-value = 0.880 6) 

Thioredoxin peroxidase-1 (TPx-1; 
AGAP000396) 

Antioxidant enzyme that catalyzes 
peroxides (Bauer et al., 2002) 

None 
(P-value = 0.797 6) 

Atypical 2-Cys peroxiredoxin 
(Peroxiredoxin V; PrxV; 
AGAP001325) 

Antioxidant enzyme that protects 
against ROS/RNS (Peterson & 
Luckhart, 2006) 

None 
(P-value = 0.873 6) 

Glutathione synthase (GS; 
AGAP000534) 

Involved in the GSH biosynthesis 
pathway 

None 
(P-value = 0.851 5) 

Glutathione peroxidase (GPx; 
AGAP004247) 

Antioxidant enzyme that catalyzes 
peroxides (Molina-Cruz et al., 2008) 

None 
(P-value = 0.899 8) 

Glutathione S-transferase delta class 
1 (GSTD1; AGAP004164) 

Implicated in insecticide resistance 
and detoxifies xenobiotic 
compounds (Prapanthadara, 
Hemingway, & Ketterman, 1993; 
Ranson et al., 2001) 

None 
(P-value = 0.919 5) 

Glutaredoxin-1 (Grx-1; 
AGAP011107) 

Essential component of the GSH 
system (Giordano, Peluso, Rendina, 
Digilio, & Furia, 2003; Mercer & 
Burke, 2016) 

None 
(P-value = 0.483 8) 

The data is summarised into three columns. In the first column gives the name of the 
transcript with its abbreviated form and accession number. The second column gives a brief 
summary of the function of the described transcript with any associated references. In the 
third column, P-value (P< 0.05) results of multiple Student’s t-test on the expression level for 
each of the described transcript relative to AgRpL32  

2.4 Discussion  

We expected that Trx- and GSH-dependent proteins would be significantly enriched in mosquito 

midguts following Pqt treatment. However, we did not observe any significant enrichment in the 

antioxidant proteins identified in our proteomic data. The absence of enrichment of these proteins 
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might be due to either an early read-out time after Pqt treatment (8 hours) or a low Pqt 

concentration used (1 mM). The 8 hrs time frame was selected as it is critically relevant in the 

context of gamete-to-ookinete transition as well as in ookinete maturation. Furthermore, our 

intention was to determine whether the Pqt concentration of 1 mM elicits a Trx- and GSH-

dependent protein response in the mosquito. In a study on acute Pqt toxicity in Drosophila 

melanogaster, concentrations between 10-40 mM were used with exposure time of 24 hours 

resulting in significant elevation in oxidative stress biomarkers and antioxidant enzymes 

(Hosamani & Muralidhara, 2013). The antioxidant enzymes investigated were not Trx or GSH 

dependent apart from GSTs. However, it clearly shows that the concentration of Pqt in our 

experiments might have been too low and the exposure time too short and could explain the lack 

of enrichment of Trx and GSH dependent antioxidant proteins.  

Considering the difficulty in conducting LC-MS/MS analyses of a blood fed midgut at 24 hours 

(Dinglasan et al., 2009), we utilized qRT-PCR analyses to perform a sensitive, separate assessment 

of the regulation of nine Trx-and GSH-dependent genes. P. berghei ookinetes appear to damage 

the mosquito midgut epithelium during midgut invasion and traversal, more so than P. falciparum 

ookinetes, due to the destructive nature of its invasion process. Invasion of epithelial cells induces 

the expression of nitric oxide synthase (NOS), which catalyses the formation of nitric oxide (NO) 

(Han & Barillas-Mury, 2002; Han et al., 2000; Kumar et al., 2004; Peterson et al., 2007), a highly 

reactive RNS (Brune, von Knethen, & Sandau, 1998). As Trx and GSH pathways are the primary 

cellular antioxidant and anti-nitrosative defence we expected to observe an increase in expression 

of Trx-and GSH-dependent genes following Plasmodium infected blood meal ingestion. The 

absence of significant upregulation of the investigated antioxidant genes could indicate that P. 

falciparum ookinete invasion of the Anopheles midgut does not cause significant oxidative stress 

when compared to that observed for P. berghei. This could be due to either or a combination of 

the following reasons. First, P. falciparum has co-evolved with An. gambiae, and causes less 

destruction of midgut epithelial cells during midgut invasion compared to P. berghei ookinetes 

(Han & Barillas-Mury, 2002; Han et al., 2000). The reduced destruction is because the total 

number of ookinetes that leave the blood bolus and invade the midgut epithelium is less in P. 

falciparum compared to P. berghei evident in the reported divergent oocyst intensities for the two 

Plasmodium species (Gouagna et al., 1998; Sinden & Billingsley, 2001; Whitten et al., 2006). 
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Second, the antioxidant response in the midgut is already activated due to the blood meal content 

and the presence of P. falciparum doesn't result in any significant change (Smith et al., 2014).  

Additional experiments are required at earlier time-points, between 0 to 20 hrs, following P. 

falciparum infected blood meal ingestion to detect potential variations in the expression of Trx 

and GSH dependent genes. Furthermore, different tissues of the mosquito midgut experience 

increased levels of oxidative stress at different time points depending on the development stage 

reached by Plasmodium parasite. From blood meal ingestion to 15 hours, increased levels of 

ROS/RNS are present in the blood bolus due to vertebrate immune factors and digestion of 

haemoglobin in the blood meal (Graca-Souza et al., 2006; Lensen et al., 1997; Naotunne et al., 

1993; Peterson et al., 2007). Between 15-24 hours increased levels of ROS/RNS are in the midgut 

epithelial cells due to the initiation of asynchronous invasion of Plasmodium ookinetes (Han & 

Barillas-Mury, 2002; Han et al., 2000; Kumar et al., 2004) and because blood digestion is reaching 

its midway point towards completion (~48 hours post-blood feeding) (Graca-Souza et al., 2006). 

Although P. falciparum ookinete invasion of the midgut is at its maximum at 24 hours (Graca-

Souza et al., 2006), it is entirely plausible that the levels of ROS/RNS in the midgut have already 

been reduced at this time-point due to either the advanced progress in digestion of haemoglobin 

and/or the small number of P. falciparum ookinetes involved in the invasion process.  

The absence of a significant enrichment in antioxidant proteins following ingestion of a Pqt-laced 

sugar meal prompted us to closely examine the identified enriched proteins in the context of 

oxidative stress regulation. The mosquito midgut epithelial cells response to Pqt appears to be 

mediated primarily through the midgut ER-stress pathway indicated by our finding that 

detoxification and ER stress-related proteins were enriched in the Pqt-treated midguts. Oxidative 

stress is known to increase the amount of misfolded or unfolded protein in a cell. The unfolded 

protein response (UPR) is a cellular surveillance mechanism that identifies misfolded proteins in 

the ER and then either repairs them or redirects those that are misfolded beyond repair to the 

degradative pathway (Malhotra & Kaufman, 2007). Therefore, the UPR coordinates the ER protein 

folding demand and capacity with regards to the homeostatic status of a cell.  

At 1 mM concentration of Pqt used in our experiments, misfolding and unfolding of proteins 

resulted prompting their immediate repair. The enriched levels of CRT, EIF2S1, and Ca-P60A is 
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a UPR induced due to ER stress in midgut epithelial cells caused by the increase in misfolded and 

unfolded proteins, and intended to re-establish protein homeostasis. CRT recognizes misfolded 

proteins and binds to them preventing them from leaving the ER, while EIF2S1 attenuates mRNA 

translation preventing influx of misfolded and damaged proteins into the ER (Bergeron, Brenner, 

Thomas, & Williams, 1994; Harding, Zhang, & Ron, 1999; Helenius, Trombetta, Hebert, & 

Simons, 1997). Enriched levels of CRT and EIF2S1 is evidence of protein repair on-going in 

midgut epithelial cells following Pqt treatment. Furthermore, oxidative stress is associated with 

decreased levels of calcium ion (Ca2+) in the ER lumen, which further impairs the ER’s ability to 

function properly. The ER has the highest concentration of Ca2+ in a cell compared to the cytosol 

or other cellular organelles (Miyawaki et al., 1997). This concentration is regulated by transporter 

and channel molecules involved in the uptake or release of Ca2+ between the cytosol and ER lumen 

(MacLennan, Rice, & Green, 1997; Pozzan, Rizzuto, Volpe, & Meldolesi, 1994). Ca-P60A is a 

transporter in the ER membrane involved in the uptake of Ca2+ from the cytosol into the ER lumen. 

Enrichment in this protein is evidence of Ca2+ imbalance associated with ER stress and intended 

to increase the concentration of Ca2+ in the ER of midgut epithelial cells. CRT is also capable of 

binding to Ca2+ and therefore is involved in regulation of Ca2+ homeostasis within the ER (Baksh 

& Michalak, 1991; Ostwald & MacLennan, 1974). This shows the enriched CRT levels was also 

involved in ensuring there is high Ca2+ levels in the ER of midgut epithelial cells. 

A limitation of the study is that direct measurement of the protein profile of An. gambiae midgut 

in response to a Pqt-laced blood meal was not carried out. It’s suspected that the unpleasant strong 

odour of Pqt resulted in mosquito repellence and preventing DMFA from taking place. Therefore, 

the difference in the expected versus observed protein response profiles could be a result of the 

route of exposure to Pqt, i.e., ATP-saline solution versus blood meal. A completely different 

pathway for redox homeostasis was observed than previously described by others, which suggests 

that the mosquito midgut has in place at least two cellular response mechanisms that partition 

based on the manner by which ROS are induced in the tissue. The homeostatic regulation of ROS 

during mosquito blood feeding is well established (Billingsley & Rudin, 1992; Drexler et al., 2014; 

Galun et al., 1963), and it is likely that the mosquito can tolerate concentrations greater than 1 mM 

of Pqt due to the mitigating effects of several ROS mediation pathways that are active in concert 

in the midgut. One reasonable interpretation of these results in the context of our hypothesis and 
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proposed transmission-blocking drug paradigm is that in a real transmission scenario, complete 

with Pqt-like drugs, a blood meal, and malaria parasites, the mosquito will likely remain unaffected 

by high levels of ROS, whereas the parasite will succumb 

2.5 Conclusion 

The study herein has shown that the An. gambiae midgut response to Pqt-mediated oxidative stress 

initiates an ER stress pathway rather than inducing the canonical Trx- or GSH-dependent 

antioxidant proteins. Quite the opposite has been shown for Pqt-mediated oxidative stress in 

Plasmodium (in both asexual and sporogonic stages), where it is mainly regulated through Trx- 

and GSH-dependent proteins (Marva, Chevion, & Golenser, 1991; Turturice et al., 2013). This 

difference in the regulated response to Pqt between Anopheles and Plasmodium could be harnessed 

as an intervention strategy against Plasmodium development in Anopheles midguts. Pqt at the 

concentration used in our experiments is known to be effective against the parasite (Turturice et 

al., 2013), but is not immediately harmful to the mosquito. However, the potential utility of Pqt as 

a transmission-blocking compound was not explored in this present study. Pqt’s high toxicity in 

different cell systems precludes it from such a translational application. Further studies are needed 

screen a suite of other Pqt-like drugs that can fulfil this role. Ideally, this screen would identify a 

shortlist of repurposed, druggable compounds and an appropriate, safe dose that is selectively toxic 

and deleterious to Plasmodium, but yet allowing Anopheles and human hosts to remain unaffected. 

The identified drug compound(s) can then be deployed to a field setting to evaluate for its 

transmission-blocking effect against locally circulating parasites.  
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3.0 Abstract 

A fundamental understanding of redox homeostasis in An. gambiae midgut cells under different 

oxidative conditions is missing. Such knowledge can aid in the development of new malaria 

transmission-blocking strategies aimed at disrupting natural homeostatic processes in the mosquito 

during Plasmodium parasite uptake (i.e. blood feeding). The aim of this study was to understand 

how the Anopheles gambiae midgut regulates oxidative stress to ROS, especially to a potent ROS-

inducer such as tert-Butyl hydroperoxide (tBHP).  

Initial studies using quantitative immunoblot indicated that the expression of the classical 

antioxidant protein An. gambiae thioredoxin-1 (AgTrx-1) remained unchanged across challenges 

with different concentrations of tBHP suggesting that additional mechanisms to regulate ROS may 

be involved. We therefore conducted a global proteomic survey, which revealed that An. gambiae 

midguts under low (50µM) and high (200µM) tBHP concentrations were enriched in proteins 

indicative of ribosomal/nucleolar stress. Ribosomal stress is an inherent cellular response to an 

imbalance in ribosomal proteins (RPs) due to cellular stress such oxidative stress. The data 

presented herein suggest that ribosomal/nucleolar stress is the primary cellular response in An. 

gambiae midguts under tBHP challenge. Considering these results, harnessing the ribosomal stress 

response as a potential malaria transmission-blocking strategy is discussed. 

3.1 Introduction 

The sporogonic life cycle of Plasmodium in the mosquito is primarily extracellular and therefore, 

the parasites are directly and constantly exposed to reactive oxygen and nitrogen species, ROS and 

RNS, respectively. ROS and RNS are produced in part by mosquito’s immune system in response 

to invasion of its midgut epithelial cells by the parasite (Han & Barillas-Mury, 2002; Han et al., 

2000; Kumar et al., 2004), vertebrate immune factors present in the ingested blood (Lensen et al., 

1997; Naotunne et al., 1993), and natural digestion of hemoglobin present in the ingested blood 

(Graca-Souza et al., 2006; Peterson et al., 2007). This highly oxidative environment, results in a 

population bottleneck for the parasite during development in the mosquito vector (Sinden, 1999; 

Sinden & Billingsley, 2001). 
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To maintain redox homeostasis, organisms possess the Thioredoxin (Trx) and Glutathione (GSH) 

systems as prominent mechanisms against oxidative stress. The GSH system involves the 

tripeptide, GSH, and in its antioxidant activity, GSH is converted to glutathione disulfide (GSSG) 

(Schafer & Buettner, 2001). This oxidized form is converted back to the reduced form by the 

nicotinamide adenine dinucleotide phosphate-dependent flavoenzyme glutathione reductase 

(NADPH-GR) (Schirmer, Bauer, & Becker, 2002). The Trx system is comprised of thioredoxins 

(Trxs), and thioredoxin reductase (TrxR) (Arner & Holmgren, 2000; Holmgren, 1985). Trxs are 

small (12 kDa) and ubiquitous thiol proteins. Trxs cycle between a disulfide and a dithiol form, 

catalyzed by TrxR (Mustacich & Powis, 2000). An. gambiae and An. stephensi mosquitoes regulate 

Trx- and GSH-dependent antioxidants to protect midgut epithelial cells against ROS and RNS 

(Molina-Cruz et al., 2008; Peterson & Luckhart, 2006). Notably, Anopheles mosquitoes and other 

dipterans lack the flavoenzyme GR of the GSH pathway and utilize the Trx system to recycle 

GSSG to GSH as shown in Fig.5A (Kanzok et al., 2001).  

Little is known about Trx at molecular level in Anopheles mosquitoes despite its importance in 

redox homeostasis in midgut epithelial cells under different oxidative conditions. In this report, 

we used an ex vivo midgut culture model to first investigate An. gambiae Thioredoxin-1 (AgTrx-

1) protein expression in response to ROS challenge. Contrary to our expectations, we did not 

observe an upregulation in AgTrx-1 across various concentrations of a ROS challenge. We then 

expanded our exploration to other redox homeostasis pathways by capturing the global midgut 

proteomic expression profile, with the aim of understanding organ-level regulation following 

exposure to the ROS- inducer, tert-Butyl hydroperoxide (tBHP). 

3.2 Materials and Methods 

3.2.1. Ex vivo Midgut Organ Culture Media 

Ex-vivo studies were done using An. gambiae midguts maintained in a culture media that contained 

3895 μL of RPMI 1640 without L-glutamine or phenol red (Quality Biologicals), 1 mL of heat-

inactivated fetal bovine serum (Sigma-Aldrich), 100 μL of 10000U: 10mg/ml PenStrep (Cellgro) 

to a final concentration of 100U; 10 μg/mL, and 5 μL of 250 μg/ml amphotericin. Due to its 

sensitivity to light, Amphotericin was added to the media last and the final volume was 

immediately covered by foil to reduce light exposure. The media was equally split into 1.5 ml 
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tubes each containing 1 ml and stored at -20oC until usage. 

3.2.2 Mosquito Rearing, Experimental Treatments, and ROS Induction Assays 

An. gambiae (KEELE strain) mosquitoes were used for all the experimental treatments. These 

mosquitoes were maintained in an insectary at the Johns Hopkins Malaria Research Institute 

(JHMRI), at 26°C and 70% humidity with 12 hours light: dark cycles and supplemented with 10% 

sucrose solution. 

ROS induction (oxidative stress) assays were performed using an ex vivo system. In these assays, 

50 An. gambiae female mosquitoes (4-7 days old) were dissected and individual midguts collected 

in 1x PBS on ice. In each of the treatment groups the 50 midguts were split into two sub-groups: 

one containing five midguts (for SDS-PAGE and immunoblot analysis) and the other containing 

45 midguts (for LC-MS/MS analysis). Midguts in both groups were submerged in 200 μL 

containing their respective concentrations of tBHP (Alfa Aesar, Haverhill, MA) in organ culture 

media and left for 15 minutes at room temperature away from light exposure due to sensitivity of 

amphotericin to light. Treatment media was then removed from the midgut samples followed by 

stringent wash of the samples with 1x PBS and storage at -20oC and -80oC until further SDS-

PAGE/immunoblot and LC-MS/MS analyses, respectively. The treatments groups were: control 

(organ culture media only), 50 μM, 125 μM, 200 μM, 250 μM, 500 μM, and 1 mM. These 

experiments were replicated three times using independent biological cohorts of mosquitoes. 

3.2.3 SDS-PAGE and Immunoblot Analysis 

Midgut lysates (5 midgut equivalents) of experimental groups were thawed on ice to RT and then 

heated at 95oC for 10 minutes. Approximately 15 μL of midgut lysates (~2.5 midguts per well) 

were loaded into a 4-20% Tris-glycine gel. Proteins were separated under reducing conditions at a 

constant 100V and then transferred to a nitrocellulose membrane. The membranes were blocked 

in a solution of Odyssey blocking buffer (Li-COR Biosciences, Lincoln, NE) then probed first 

with rabbit anti-AgTrx-1 antiserum (obtained from S. Kanzok, Loyola University) (44 mg/ml) and 

second with rabbit anti-AnAPN-1 (RCB-A terminal) mAb used as a loading control diluted 1:200 

and 1:1000 in a solution of Odyssey blocking buffer, respectively.  
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Mouse anti-rabbit IgG secondary antibodies labelled with IRDye 680RD (Li-COR Biosciences, 

Lincoln, NE) diluted 1: 20,000 in Odyssey blocking buffer was used to detect anti-AgTrx-1 and 

anti-AnAPN-1 separately. Quantitative immunoblotting was performed by determining AgTrx-1 

expression levels relative to An. gambiae midgut AnAPN-1 (AGAP004809) using the Li-COR 

analytical software (version 3.0). All immunoblots were imaged using the Li-COR Odyssey 

infrared imaging system (Li-COR) and signal intensity was calculated in K counts mm2.  

3.2.4 Extraction, Solubilization, and Digestion of Proteins 

Prior to LC-MS/MS analysis, treatment groups (45 midguts/samples) were processed for proteins. 

Total protein lysate was prepared by lysing the midgut samples with 45 μL of SDST-lysis buffer 

(4% SDS (w/v), 100 mM Tris/HCl, 0.1 M DTT pH 7.6) and boiled at 95oC for 5 minutes. 30 μL 

of the protein lysates was taken for protein digestion according to the Filter-Aided Sample 

Preparation (FASP) protocol previously described by Wiśniewski et al. using a 10 kDa molecular 

weight cutoff filter (EMD Millipore, Billerica, MA) as previously described (Tao, King, et al., 

2014; Tweedell et al., 2015).  Acidified tryptic peptides from FASP approaches were desalted 

using an HPLC column and their concentrations determined by BCA as previously described (Tao, 

King, et al., 2014; Tweedell et al., 2015).  

3.2.5 Online 2D LC-MS/MS 

Peptide products desalted and digested by the FASP protocol were dissolved in loading buffer 

(97.9% water, 2% ACN, and 0.1% formic acid (FA)) and ~ 20 μg was injected to our previously 

constructed online 2D HPLC-MS/MS system, using the exact method as previously described 

(Tao, King, et al., 2014; Tao, Ubaida-Mohien, et al., 2014; Tweedell et al., 2015).  

3.2.6 Database Searching and Label Free Quantification 

All the LC-MS/MS raw data were converted to Mascot generic format (.mgf) by Agilent 

MassHunter Qualitative Analysis B.04.00. The data acquired was used to search the 

VectorBaseAnopheles gambiae protein FASTA sequence database (VectorBase, 

http://www.vectorbase.org, Anopheles gambiae PEST, AgamP4.2.) for peptide sequence 

alignments. The search engine used for the search was MASCOT version 2.5 with the following 
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parameters: precursor ion mass tolerance of 50 ppm, fragment ion mass tolerance of 0.2 Da, 

carbamidomethylation of cysteine and oxidation of methionine residues set as fixed and variable 

modifications respectively. Peptides were searched using fully tryptic cleavage constraints, and up 

to two internal cleavage sites were allowed for tryptic digestion.  

The MASCOT search results were exported as .DAT format and then imported into the Scaffold 

software (version 4.4.5, Proteome Software) for curation, label-free quantification, analysis, and 

visualization. Overall, protein false discovery rates of less than 1% and peptide false discovery 

rates of less than 1% were obtained with Scaffold filters, and each protein had ≥ 2 unique peptides. 

Identified proteins were clustered to remove redundancy. Proteins were clustered together if there 

was a peptide identification shared between them, because this indicates substantial sequence 

similarity, and the protein with the greatest number of peptides identified was considered the 

unique protein identification from that group. The data analysis pipeline meets all MIAPE 

standards (Taylor et al., 2007) and the detailed peptide data can be found in Appendix 5.  

3.2.7 Statistical Analyses 

For quantitative immunoblot analyses, relative expression of AgTrx-1 was calculated using a one-

way multi-variable analysis of variance (ANOVA). Proteins quantification to identify enriched 

proteins between treatment groups was carried out by Student’s t-test. All statistical analyses were 

carried out using the software GraphPad Prism (version 6.0e). The P-values of ≤0.05 were 

considered statistically significant. All experimental reactions were carried using at least three 

independent replicate samples.  

3.3 Results 

3.3.1 AgTrx-1 Protein Expression Levels 

The lack of GR and instead utilization of the Trx system for GSSH recycling underscores the 

importance of Trx system in an antioxidant response in dipterans. As Trx-1 is one of main the 

components of the Trx system, it therefore must play an essential role in this antioxidant response 

(Bauer et al., 2003; Kanzok et al., 2001). Quantitative immunoblot analysis was carried out for 
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AgTrx-1 protein expression in midguts that were previously exposed to the ROS producing agent 

tBHP.  

A distinct clear band was observed at Mr of ~12 kDa across all the treatment groups and biological 

replicates, which corresponds to the Mr of AgTrx-1 as shown in Fig. 5B. Protein doublets observed 

in the Western blot may reflect multimer of AgTrx-1 or another cellular target of the antiserum 

used (Lee, Kim, & Lee, 2013). AgTrx-1 protein expression level (K-counts) measured as relative 

expression to the loading control Anopheline aminopeptidase-1 (AnAPN1), did not exhibit any 

significant difference in An. gambiae midguts incubated with different concentrations of tBHP 

when compared to untreated controls (P-value = 0.169 5) as shown in the lower panel of Fig. 5B 

and Appendix 6. There was no significant change in the AgTrx-1 expression when the tBHP 

concentration was increased from 250 µM to 1 mM (P-value = 0.452 5) as shown in the lower 

panel of Fig. 5B and Appendix 6.  
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Figure 5. Redox regulation in Anopheles mosquitoes and AgTrx-1 expression levels 
under different oxidative stress conditions (A)Interactions between the 
Trx and GSH systems in redox homeostasis in Anopheles mosquitoes. GR 
is absent in the GSH system of Anopheles mosquitoes and is crossed out to 
convey this point. Therefore, Anopheles mosquitoes and other dipterans 
recycle glutathione disulphide through a dithiol-disulphide exchange with 
reduced thioredoxin. Reduced thioredoxin is recycled from its oxidized 
form by thioredoxin reductase thus maintaining sufficient levels of itself 
for subsequent glutathione disulphide recycling. GSSG = glutathione 
disulfide, GSH = glutathione, glutathione reductase = GR, NADPH = 
reduced nicotinamide dinucleotide phosphate, TrxR = thioredoxin 
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reductase, TrxS2 = thioredoxin disulfide, Trx(SH)2 = reduced thioredoxin, 
Trx-1= thioredoxin-1, Trx-2 = thioredoxin-2, and TPx = thioredoxin 
peroxidase.  

(B) AgTrx-1 protein expression in An. gambiae midgut epithelial cells. 
Immunoblot with a-AgTrx-1 antiserum of female An. gambiae midgut 
lysates obtained by incubation of midguts (5 per sample) under varied 
concentrations of tBHP in ex vivo organ culture media for 15 minutes. 
Female An. gambiae midgut lysates treated with ex vivo organ culture 
media (lanes 1, 5, and 9), 50 μM t-BHP (lanes 2, 6, and 10), 125 μM tBHP 
(lanes 3, 7, and 11), and 200 μM tBHP (lanes 4, 8, and 12) for the upper 
panel. Immunoblot with a-AgTrx-1 antiserum of female An. gambiae 
midgut lysates obtained by incubation of midguts (5 per sample) under 
varied concentrations of tBHP in ex vivo organ culture media for 15 
minutes. Female An. gambiae midgut lysates treated with ex vivo organ 
culture media (lanes 1, 5, and 9), 250 μM tBHP (lanes 2, 6, and 10), 500 
μM tBHP (lanes 3, 7, and 11), and 1 mM tBHP (lane 5, 9, and 13) for the 
lower panel. Lanes 1-4 (biological replicate 1), lanes 5-8 (biological 
replicate 2), lanes 9-12 (biological replicate 3). AnAPN1 (~135 kDa), as a 
loading control is shown below each treatment column. P-values (P ≤ 0.05) 
were calculated by the parametric one-way Analysis of Variance 
(ANOVA) followed by Bonferroni’s correction.   
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3.3.2 Global Proteomics Profiles 

The absence of significant regulation in AgTrx-1 expression level prompted us to expand our 

investigation into the antioxidant response. To this end, the global proteomic profile in midgut 

epithelial cells in response to varying tBHP challenges was analysed.  

Three experimental groups were generated: (1) untreated ex vivo organ culture only (control), and 

two tBHP-treated groups exposed to (2) 50 µM (low), and (3) 200 µM (high). A total of 1,567 

quantifiable proteins were identified using the VectorBase An. gambiae protein FASTA sequence 

database (http://www.vectorbase.org, Anopheles gambiae PEST, AgamP4.2) (Giraldo-Calderón et 

al., 2015) with MASCOT version 2.5 used as the search engine as shown in Appendix7-9. The 

three experimental groups shared 1,195 of the proteins (76.3%), while 83 proteins (5.3%) were 

found only in the control group, 49 proteins (3.13%) were found only in the low tBHP group, and 

5 proteins (0.32%) were found only in the high tBHP group as shown in Fig. 6A. Furthermore, 

proteomic profiles of the different experimental groups identified 1,356 proteins (86.5.7%) shared 

between the control and low tBHP groups as shown in Fig. 6B, 1233 proteins (78.6%) shared 

between control and high tBHP groups as shown in Fig. 6C, and 1,231 proteins (78.6%) shared 

between low and high tBHP groups as shown in Fig. 6D.  

Antioxidant proteins, which fell into the following groups: heat shock proteins (HSP), 

cytochromes (CYT), Trx-dependent, and GSH-dependent proteins were identified as shown in 

Appendix 7-9. However, only 20 antioxidant proteins out of total 1567 proteins (1.27%) were 

significantly enriched suggesting that the midgut cells were not initiating an antioxidant response. 

It was then hypothesized that they may be responding through other mechanisms to tBHP 

generated ROS.  

Further analysis of the proteomic profiles of the experimental groups based on their spectral count 

values (P ≤ 0.05; Student’s t-test) identified additional 89 proteins that were differentially 

expressed between the groups as shown in Fig. 7A-C and Appendix 7-9. Out of these, we found 

10 proteins that were enriched (highly expressed) in the low treatment group as shown in Fig. 7A 

and Appendix 7; 18 proteins enriched in the high treatment group as shown in Fig. 7B, C and 

Appendix 8, 9. Evaluation of the respective annotated functions of the enriched proteins revealed 
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cellular roles in either ribosome biogenesis or in cellular trafficking as part of the lysosomal 

exocytosis machinery. In this report, a focus on proteins with annotated functions in ribosome 

biogenesis is assessed due to their close interlink to cellular stress response, including oxidative 

stress, and the potential application of the ribosome biogenesis machinery as a transmission 

blocking intervention for Malaria. Details about the other proteins involved in cellular trafficking 

and lysosomal exocytosis are shown below in Table 5. 

Table 5. Proteins enriched with function in either posttranslational modification, cellular 
   transport, or energy metabolism 

Protein description tBHP 
group 

Fold 
change 

P-value Function Signal 
peptide 
(Y/N) 

SCPEP1 (AGAP011442) 
Serine carboxypeptidase 1 

Low 5.00 0.000 1 Posttranslational 
processing(Pshezhetsky & Hinek, 
2009).  

Y 

VHASFD(AGAP009486) 
V-type transporting ATPase 
54 kDa subunit 

Low 2.30 0.001 4 Electrogenic pump(Forgac, 2007).  N 

MT-ATP6 (AGAP005134) 
F-type H+ transporting 
ATPase 

Low 1.40 0.01 Energy metabolism(Yoshida, 
Muneyuki, & Hisabori, 2001).  

Y (mTP) 

ISCS (AGAP009094) 
cysteine desulfurase 

Low 3.30 0.011 Biosynthesis of iron-sulfur (Fe-S) 
clusters(Braymer & Lill, 2017).  

Y (mTP) 

PMPCB (AGAP005558) 
peptidase (mitochondrial 
processing) beta 

Low 1.5 0.013 Catalyses the cleavage of 
nascent/pre-proteins newly 
imported into the 
mitochondria(Mossmann, 
Meisinger, & Vogtle, 2012).  

Y (mTP) 

NDUFV1 (AGAP010039) 
NADH dehydrogenase 
[ubiquinone] flavoprotein1, 
mitochondrial 

Low 3.20 0.014 Energy metabolism (Yagi & 
Matsuno-Yagi, 2003).  

Y (mTP) 

GLEANR (AGAP008861) 
Female reproductive tract 
protease 

Low 2.2 0.018 Posttranslational 
processing(Pshezhetsky & Hinek, 
2009).   

Y 

EHD1 (AGAP004593) 
Eps 15 homology domain-
containing protein 1 

Low 1.5 0.026 Cellular transport of compounds 
(Kieken, Jovic, Naslavsky, 
Caplan, & Sorgen, 2007).  

N 

SEC11 (AGAP003069) 
Signal peptidase, ER-type 

Low 8.2 0.048 Posttranslational 
processing(Pshezhetsky & Hinek, 
2009).  

N 

CLIC (AGAP000943) 
Chloride intracellular 
channel 

High 3.1 0.006 1 Chloride ion transport across 
membranes (Littler et al., 2010).  

N 

VHASFD (AGAP009486) 
V-type transporting ATPase 
54 kDa subunit 

High 2.80 0.006 1 Electrogenic pump (Nishi & 
Forgac, 2002).  

N 

SCPEP1 (AGAP011442) 
Serine carboxypeptidase 1 

High 4.70 0.013 Posttranslational processing 
(Pshezhetsky & Hinek, 2009).  

Y 
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In the first column, the name of the protein is described with its abbreviated form and 
accession number. The second column indicates the treatment group. The third column 
shows the fold change in enrichment level for each of the described proteins. The fourth 
column shows the P-value (P ≤0.05) results of Student’s t-test comparisons on the fold change 
in enrichment level. Only P-values that are significant are provided. The fifth column 
describes the function of the described protein and associated references and the last column 
denotes whether the protein contains a signal peptide. Y = yes, N = no, and mTP = 
mitochondrial Target Peptide 

 

 

 

 

 

 

 

 

ANPEP (AGAP012745) 
Alanyl aminopeptidase 

High 1.9 0.019 Peptidase activity; 
posttranslational 
modification(Bauvois & 
Dauzonne, 2006; Zhang & Xu, 
2008).  

N 

SRPRA (AGAP010894) 
Signal recognition particle 
receptor alpha  

High 1.7 0.026 Cellular transport (Gilmore, 
Blobel, & Walter, 1982; Gilmore, 
Walter, & Blobel, 1982).  

Y 

PSMC4 (AGAP003008) 
26Sproteosome regulatory 
subunit T3 

High 1.7 0026 Protein homeostasis (Hiller, 
Finger, Schweiger, & Wolf, 
1996).  

N 

APN3 (AGAP013255) 
Aminopeptidase N3 

High 2.1 0.028 Peptidase activity; 
posttranslational modification 
(Luan & Xu, 2007).  

Y 

SLC22 (AGAP004309) 
Solute carrier family 22 

High 1.8 0.031 Cellular transport (Koepsell, 
2013).  

N 

ATP6V1D (AGAP010298) 
V-type H+ transporting 
ATPase subunit D 

High 2.6 0.045 Electrogenic pump (Dow, 1999).  Y (mTP) 

NUP210 (AGAP006280) 
Nuclear pore complex 
protein glycoprotein 210 

High 2.0 0.000 6 Cellular transport.  N 
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Figure 6. Protein identification comparisons between treatment groups in An. 
gambiae midguts. Midgut lysates from female An. gambiae mosquito 
midguts treated with varied concentrations of tBHP were subjected to a 
LC-MS/MS analysis to identify expressed proteins. (A) Proteins identified 
in all three experimental groups of control (untreated ex vivo organ culture 
media only), low (50 µM tBHP), and high (µM tBHP). (B) Proteins 
identified in control and low tBHP groups. (C) Proteins identified incontrol 
and high tBHP groups. (D) Proteins identified in high andlow tBHP groups 
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3.3.3 Alteration in Ribosomal Proteins Profile 

Differential expression of several RPs was observed in An. gambiae midgut epithelial cells that 

were exposed to different treatments of tBHP as shown in Fig. 7A-C and Table 6-7. Enrichment 

of 60S ribosomal protein L7 (RpL7) by 1.9-fold was identified in the low tBHP group as shown 

in Fig. 7(A) and Table 6. In this group, 60S L13 (RpL13) and L22 (RpL22) ribosomal proteins by 

were underrepresented by 1.5- and 1.33- fold, respectively as shown in Fig. 7A and Table 7.  

Enrichment of 60S ribosomal protein L10a (RPL10A), 40S ribosomal protein S15 (RPS15), 40S 

ribosomal protein S3a (RPS3A), 60S ribosomal protein L19 (RpL19), and a putative RNA binding 

protein enriched by 3.0-, 5.30-, 1.55-, 2.31-, and 2.72-fold, respectively, was identified in the high 

tBHP group as shown in Fig. 7B, C and Table 6. In contrast, seven RPs showed reduced expression 

in the high treatment group: 60S ribosomal protein LP1 (RpLP1), 40S ribosomal protein S26 

(RpS26), 60S ribosomal protein L32 (RpL32), 60S ribosomal protein L13a, (RpL13a), 60S 

ribosomal protein L11 (RpL11), 40S ribosomal protein S14 (RpS14), and 40S ribosomal protein 

S18 (RpS18) with 2.86-, 3.85-, 2.63-, 1.81-, 16.67, 2.5-, and 3.3-fold, respectively as shown in 

Fig. 7B, C and Table 7. Taken together these results are an indication that a challenge to mosquito 

epithelial cells with tBHP induces an altered expression of RPs.  
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Figure 7. Female An. gambiae mosquito midguts treated with various concentrations of 
tBHP were subjected to a LC-MS/MS analysis to identify expressed proteins. 
Volcano plots of quantifiable protein comparisons. (A) Low (50µM tBHP) 
versus control (untreated ex vivo organ culture only) experimental groups (B) 
High (200µM tBHP) versus control (untreated ex vivo organ culture only) 
experimental groups. (C) High (200µM tBHP) versus low (50µM tBHP) 
experimental groups. Significant fold change was calculated using Student’s t-
test with P-value ≤ 0.05. Annotations of significantly enriched proteins are 
indicated 
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Table 6. Overexpressed (enriched) RPs following treatment with low and high tBHP 
  concentrations 

In the first column, the protein is described in its abbreviated form. In the second column, 
the treatment group where the protein was enriched is mentioned. The third group shows 
the fold change in enrichment level for each of the described protein. In the fourth column, 
P-value (P≤0.05) results of Student’s t-test on the fold change in enrichment level are 
reported for each of the described protein. Only P-values that are significant are given  

 

 

 

 

 

 

 

 

 

Protein description tBHP group Fold 
change P-value Reference 

RpL7 (AGAP008916) 60S 
ribosomal protein L7 Low 1.9 0.025 

Protein translation 
machinery(Fromont-Racine, 
Senger, Saveanu, & Fasiolo, 
2003).  

RpL10A (AGAP011298) 
60S ribosomal protein L10a High 3.0 0.008 8 

Protein translation 
machinery (Koga et al., 
2003).  

RpS15 (AGAP001274) 
40S ribosomal protein S15 High 5.30 0.017  

RpS3A (AGAP003532) 
40S ribosomal protein S3a High 1.55 0.038 

Protein translation 
machinery(Wang, Pakpour, 
et al., 2015).  

RpL19 (AGAP004422) 
60S ribosomal protein L19 High 2.31 0.04 

Protein translation 
machinery(Marygold et al., 
2007).  

AGAP007325 
Putative RNA binding protein. High 2.7 0.032 None 
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Table 7. Under-expressed RPs following treatment with low and high tBHP concentrations 

Protein description tBHP 
group 

Fold 
change P-value Reference 

RpL13 (AGAP001805) 
60S ribosomal protein L13 Low 1.50 0.017 Protein translation machinery 

(Wang, Pakpour, et al., 2015).  
RpL22 (AGAP005046) 
60S ribosomal protein L22 Low 1.33 0.031 Protein translation machinery 

(Marygold et al., 2007).  
RpLP1 (AGAP007740) 
60S ribosomal protein LP1 High 2.86 0.006 7 Protein translation machinery 

(Marygold et al., 2007).  
RpS26 (AGAP012100) 
40S ribosomal protein S26 High 3.85 0.041 Protein translation machinery 

(Marygold et al., 2007).  
RpL32 (AGAP002122)  
60S ribosomal protein L32 High 2.63 0.009 2 Protein translation machinery 

(Marygold et al., 2007).  
RpL13A (AGAP010257) 
60S ribosomal protein L13a High 1.81 0.022 Protein translation machinery 

(Marygold et al., 2007).  
RpL11 (AGAP011173) 
60S ribosomal protein L11 High 16.67 0.003 6 Protein translation machinery 

(Fromont-Racine et al., 2003).  
RpS14 (AGAP002346) 
40s ribosomal protein S14 High 2.5 0.044 Protein translation machinery 

(Marygold et al., 2007).  
RpS18 (AGAP028693) 
40S ribosomal protein S18 High 3.3 0.006 5 Protein translation machinery 

(Marygold et al., 2007).  

In the first column, the protein is described in its abbreviated form. In the second column, 
the treatment group where the protein was enriched is mentioned. The third group shows 
the fold change in enrichment level for each of the described protein. In the fourth column, 
P-value (P≤0.05) results of Student’s t-test on the fold change in enrichment level are 
reported for each of the described protein. Only P-values that are significant are given  

 

 

 

 

 

 

 

 

 



 

 

 73 

3.4 Discussion  

An. gambiae midgut epithelial cells are under frequent oxidative stress either from the digestion 

of ingestion blood meal or mosquito’s innate immunity against the invading Plasmodium parasite. 

In such cases, the epithelial cells need to have their antioxidant defences highly expressed against 

the oxidative attack (Molina-Cruz et al., 2008; Peterson & Luckhart, 2006). Expression of AgTrx-

1, a key player in the cellular redox network, was observed to remain similar under different 

conditions of oxidative stress resulting from tBHP exposure. A plausible explanation for this is 

that the AgTrx-1 baseline expression could already be high in midgut epithelial cells most likely 

due to its other cellular roles in addition to the antioxidant system, so no differential expression 

was observed (Arner & Holmgren, 2000; Bouvier, Sapin, Bonnard-Gougeon, & Marceau, 2010; 

Holmgren, 1985; Yin, Xu, & Porter, 2011). Considering this initial observation, the midgut 

proteomic profiles was further examined to identify oxidative stress proteins that are differentially 

expressed following tBHP treatment.  

Examination of the midgut proteomic profile for redox-related proteins such as HSPs, CYTs, Trx-

related, and GSH-related revealed a significantly small proportion of these proteins are enriched 

following tBHP treatment. This suggests that the midgut epithelial cells are responding to the 

oxidative stress following tBHP treatment through other non-redox related mechanisms.  

A modified expression in several non-redox proteins, most notably an imbalance in the levels of 

RPs, was observed following treatment with tBHP. In an unstressed cell equimolar amounts of 

RPs are generated during ribosome biogenesis (James, Wang, Raje, Rosby, & DiMario, 2014). A 

change in the RP levels due to cellular stresses such as hypoxia, heat shock, ionizing radiation 

(IR), oxidative stress, and certain drugs could disrupt the balance and thus reduce the number of 

functional ribosomes impairing protein synthesis (Boisvert, Van Koningsbruggen, Navascues, & 

Lamond, 2007). In response, the cell induces the ribosomal/nucleolar stress response to mitigate 

the loss in functional ribosomes (Boisvert et al., 2007). In eukaryotic cells, the most common 

inducer of ribosomal stress response is the transactivation and accumulation of the tumour 

suppressor p53 caused by the inhibition of the E3 ubiquitin ligase activity of mouse double minute 

2 (MDM2) homolog on p53 (Michael & Oren, 2003). RPs can bind to the MDM2 homolog, 

inhibiting its E3 ubiquitin ligase activity on p53 which leads to activation of p53 (Daftuar, Zhu, 
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Jacq, & Prives, 2013). However, certain invertebrates including the dipteran insect Drosophila 

lack a discernible MDM2 homolog (Lane et al., 2010). Not surprisingly, A. gambiae also a 

dipteran, also lacks a discernible MDM2 homolog evident from a thorough BLAST search results 

of An. gambiae genome through the VectorBase (http://www.vectorbase.org, Anopheles gambiae 

PEST, AgamP4.2) database (data not shown), which suggests that induction of ribosomal stress 

response uses an alternative mechanism (James et al., 2014; Olausson, Nister, & Lindstrom, 2012).  

An imbalance in RP levels has been shown to be associated with the “Minute” phenotype in 

Drosophila (Marygold et al., 2007). The “Minute” phenotype is associated with increased 

expression of JNK signaling (McNamee & Brodsky, 2009), which has been linked to a wide range 

of biological processes, including stress response and immunity (Jasper et al., 2001; Kockel, 

Homsy, & Bohmann, 2001). Interestingly, Drosophila homologs of the differentially expressed 

RPs in our Anopheles proteomic data have either been confirmed or predicted to be encoded by a 

“Minute” locus in the fruit fly (Marygold et al., 2007). Therefore, it is postulate that an overall 

imbalance in the levels of RPs following tBHP treatment of An. gambiae midguts has the same 

consequence of increasing the expression of JNK signaling as seen in Drosophila. Increased 

expression in JNK signaling increases tolerance to oxidative stress in Drosophila as well as in A. 

gambiae (Jaramillo-Gutierrez, Molina-Cruz, Kumar, & Barillas-Mury, 2010). Overexpression of 

the upstream member JNKK (Hemipterous; Hep) or down regulation of the downstream target 

puckered (puc) in Drosophila results in flies that exhibit an increased tolerance to oxidative (Wang, 

Bohmann, & Jasper, 2003). Interestingly, in An. gambiae, JNK signaling regulates the gene 

oxidation resistance 1 (OXR1), which in turn regulates the expression of antioxidant enzymes such 

as Catalase and GPx (Jaramillo-Gutierrez et al., 2010).  

3.5 Conclusion 

The data herein suggest that various inducers of ROS trigger a non-AgTrx-1 pathway, that is likely 

dependent on the potency of the ROS-inducer. The AgTrx-1 and ribosomal/nucleolar stress 

response may work in concert to maintain cellular/tissue homeostasis during blood feeding. The 

induction of ribosomal/nucleolar stress, as the additional response to oxidative stress, could be 

harnessed as a transmission-blocking strategy. A practical scenario could be the application of 

druggable small molecules that would induce high ROS activity in the mosquito bloodmeal bolus 
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in the midgut during digestion (akin to levels induced by tBHP). This would create an environment 

of selective toxicity wherein the mosquito naturally survives due to its cooperative oxidative stress 

response pathways, but the parasite would be unable to manage the elevated oxidative stress, 

resulting in its arrested development and destruction by the mosquito and thus failure to be 

transmitted to the next human host. 

A major limitation to this work is that measurement of ROS/RNS levels in both the control and 

treated midgut samples was not carried out due to the inherent technical difficulties with this 

system. This makes it difficult to ascertain if the response observed is entirely due to tBHP 

treatment. Furthermore, we were not able to carry out the transmission-blocking potential of tBHP 

in vivo against Plasmodium due to difficulty in getting the mosquitoes used in our assays to feed 

on a blood meal containing tBHP owing to its mosquito repellence.  
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CHAPTER FOUR  

4.0 GENERAL DISCUSSION, CONCLUSION, AND RECOMMENDATIONS 

4.1 General Discussion 

4.1.1 Proteomic and Transcript Profiles Under Different Oxidative Stress Conditions  

In chapter 5, enrichment of antioxidant proteins from Trx and GSH pathways was expected 

following treatment of An. gambiae mosquitoes with 1mM of Pqt. Contrary to this, we did not 

observe any significant enrichment of antioxidant proteins from the Trx and GSH pathways. 

Furthermore, significant enrichment of any other protein belonging to any class of known cellular 

antioxidants was not observed.  

Other studies looking at the effect of ROS in Anopheles mosquitoes used a different route to 

administer the ROS inducer. It was observed that direct injection (microinjection) of the ROS 

inducer into Anopheles mosquitoes’ midgut results into a significant Trx- and GSH-dependent 

antioxidant response despite much less or similar concentration levels of the ROS inducer used 

compared to the present study (Jaramillo-Gutierrez et al., 2010; Molina-Cruz et al., 2008). A Trx-

dependent antioxidant response was also observed, when ROS inducers were directly added into 

Anopheles mosquitoes cell lines (in vitro) similar to the studies by (Peterson et al., 2007). This 

difference in the results between these studies and our present study could be down to the route of 

administration of the ROS inducer. In the present study, the ROS inducer (Pqt) was ingested in 

contrast to direct injection into the midgut in the other studies. The decision to choose “ingestion” 

over “injection” is with regards of how a a transmission blocking drug will be applied to 

mosquitoes. Through ingestion, Pqt passes through several An. gambiae body organs before 

reaching the midgut. It’s possible that Pqt goes through some detoxification resulting into a slightly 

diluted concentration of Pqt reaching the midgut. The diluted concentration of Pqt may have not 

been sufficient to elicit the Trx- and GSH-dependent antioxidant response that was expected.  

To our knowledge, the present study is the first in trying to look at the effect of a ROS inducer 

after ingestion by the mosquito. Comparison of our results to a similar study carried out in D. 

melanogaster shows that the concentration of ROS-inducer and duration of the exposure used in 
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our study was substantially lower (Hosamani & Muralidhara, 2013). Therefore, it is entirely 

plausible that the lack of enrichment in Trx and GSH antioxidant proteins was entirely due to this. 

Furthermore, in the context of a transmission blocking strategy, future studies that identify 

candidate for this intervention must accurately define a dose would remain effective in the 

mosquito considering that this dose would get slightly diluted by the time it reaches the midgut.   

Invasion of An. gambiae midgut cells by P. berghei parasite is disruptive and associated with 

increased oxidative stress. We wanted to observe if similar results would be obtained with invasion 

of An. gambiae midgut cells by P. falciparum parasites at 24 hours post blood meal ingestion. P. 

falciparum is known to be less destructive and possibly associated with reduced or absence of 

oxidative stress. Our results showed that there was no increased expression in Trx and GSH-

dependent genes as seen in section 2.3.5 and Appendix 10-11. This suggests that P. falciparum 

invasion of An. gambiae midgut is associated with less oxidative stress and settles the debate 

whether the time bomb theory observed in An. gambiae/An. stephensi-P.berghei system also 

happens in the more natural An. gambiae/P. falciparum system. The extensive co-evolution over 

many years between the An. gambiae and P. falciparum could be one of the reasons attributing to 

this phenomenon. Also, it is worth mentioning that the absence of Trx and GSH-dependent genes 

overexpression could entirely be due to a throughout increase of an antioxidant response in the 

midgut post blood meal ingestion. In this regard, the additional presence of Plasmodium in the 

blood meal doesn't make any significant difference. Furthermore, similar results were obtained in 

a concomitant feeding assay using An. gambiae mosquitoes fed on P. berghei ANKA 2.34 contrary 

to our expectation and known literature as shown in Appendix 12, 13. It is not clear why a 

significant upregulation in Trx- and GSH-dependent genes was not observed but a plausible 

explanation could be that the read out time of 24 hours is quite late such that reduced or no levels 

of the oxidative stress associated with the midgut at this timepoint and henceforth an antioxidant 

response is not necessary.  

However, a significant enrichment of proteins that are associated with ER stress pathway in An. 

gambiae midgut cells was observed following Pqt treatment. This observation is not entirely 

surprising because increased oxidative stress does indeed increase the extent of unfolding and 

misfolding in proteins. The Pqt concentration used in our study has been shown to be effective 

against the parasite (Turturice et al., 2013). But it is not directly harmful to the mosquito given the 
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response observed. Therefore, this creates an environment of selective toxicity in the mosquito 

midgut where the mosquito is able to handle the oxidative stress, but the parasite succumbs. It 

should be noted that, this study does not advocate for the use of Pqt as a transmission blocking 

drug due to its non-specific toxicity in different cell systems. Rather, a suite of Pqt related drugs 

can be identified and repurposed for this function.  

In chapter 3, an ex vivo organ culture was used to induce oxidative stress in An. gambiae midgut 

cell. Similar to what was observed in chapter 2, we did not observe an enrichment in antioxidant 

proteins with this approach as well. Instead we observed an enrichment in proteins associated with 

the ribosomal/nucleolar stress response. Evidence of upregulation in protein of the ribosomal stress 

have been observed in another dipteran, D. melanogaster (Marygold et al., 2007). The 

upregulation of ribosomal protein is the mosquito’s unique way of dealing with tBHP mediated 

oxidative stress. This response work in concert with other antioxidant mechanism with the cell in 

order to bring about redox homeostasis.  

4.1.2 AgTrx-1 is not the Cellular Marker for Oxidative Stress in An. gambiae Midgut 

  Cells 

The absence of GR in Anopheles mosquitoes for GSH recycling is substituted by the Trx system, 

particularly AgTrx-1(Bauer, Kanzok, & Schirmer, 2002; Kanzok et al., 2001). It was expected that 

an increase in oxidative stress in An. gambiae midgut cells will be associated with an increase 

expression in AgTrx-1. However, in chapter 3, our results showed that there was no significant 

difference in AgTrx-1 expression across several conditions of oxidative stress. A plausible 

explanation for this observation is that AgTrx-1 has to remain consistently high to be able to 

immediately deal with any changes in the cell’s redox environment and also to be able to 

effectively carry out any of its non-redox functions.  

4.2 Conclusion 

Our study has shown that at fairly low to moderate concentrations of ROS/RNS induction, the An. 

gambiae midgut cell’s oxidative response is through a non-Trx or GSH pathways. These responses 

in concert with the canonical antioxidant response of the Trx and GSH systems work in tandem to 

bring about redox homeostasis. Furthermore, our data supports the fact that these concentrations 
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are not directly harmful to the mosquito. Therefore, they create an environment of selective toxicity 

where they are deleterious to the parasite but not to the mosquito. This would substantially reduce 

the possibility of development of resistance in the mosquito as there is no fitness cost with the 

ROS/RNS inducer. However, since there is a fitness cost to the parasite then there is the possibility 

of resistance development. But an additional antimalaria drug against the parasite will slow due 

the development of resistance due to an increase number in drug targets that Plasmodium genome 

must mutate to develop resistance against.  

4.3 Recommendations 

This study is not in support of tBHP or Pqt to be use as transmission blocking drugs. This study 

provides a proof of principle that oxidative stress in the mosquito midgut could be harnessed as a 

transmission blocking strategy. The study advocate for future studies that would screen for 

compounds that are safe and non-toxic to humans with similar mode of action and repurposing 

them for transmission-blocking.    

These future studies should focus on differentiating between the response to oxidative stress due 

to Plasmodium infected blood meal ingestion only and that due to the ingestion of ROS inducing 

compound(s) only.  This would to comprehensive details of the differential expression of protein 

and transcripts produced under each of these conditions. ROS inducing compound(s) only specific 

proteins and transcripts could be further evaluated as potential targets for transmission blocking.  

The screening efforts for potential compounds could focus on traditional medicines/herbs that have 

been reported to treat/cure Malaria. Both CQ and Artemisinin are derived from traditional 

compounds and this underpins the importance of traditional medicines/herb in fighting malaria. 

Different societies and cultures have different traditional medicines thus priority will have to be 

given to only those medicines that have shown the most profound effect against Malaria.  

Lastly, even though this is years away but once a TBD has been identified and ready for mass 

consumption the first focus should be in areas of low malaria endemicity. Prevention of malaria 

transmission in these areas will ensure that the Plasmodium prevalence rate drops to a level that 

will not support transmission of the disease. Subsequent focus should be in areas of high 
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endemicity where this intervention should be used in addition to existing interventions used both 

the mosquito vector and parasite as per the WHO’s and the respective county’s guidelines. 
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APPENDICES 

Appendices 1 – 9: Excel sheets provided as additional files with this document. 

Appendix 10: SMFA with Pf NF54 – GSH-dependent Genes. 
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Appendix 11: SMFA with Pf NF54 – Trx-dependent Genes. 
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Appendix 12: DFA with Pb ANKA 2.34 – GSH-dependent Genes. 
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Appendix 13: DFA with Pb ANKA 2.34 – Trx-dependent Genes. 
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Figure 2. Comparative label-free quantitative
proteomic analyses of the An. gambiae midgut
responses to the ROS-inducer Pqt. (A) Global
distribution of proteins. (B) Volcano plot of
quantifiable proteins. Significant fold change was
calculated with Student’s t-test with P-value ≤ 0.05.
The red line indicates a P-value = 0.05. Annotation
of significantly enriched proteins is shown

Methods

Results

Conclusions

Global Proteomics Response

Introduction
• Oxidative stress induction assays:

a) ~ 50 An. gambiae (KEELE) female mosquitoes (4-7 days old) were fed an ATP/saline meal
supplemented with Paraquat (Pqt) through a glass, water-jacketed membrane feeders and kept for 8
hours (in vitro system).

b) 50 An. gambiae (KEELE) mosquito midguts treated with tert-butyl hydroperoxide (t-BHP) through an
organ culture media (ex vivo system).

• 5 midguts/sample from ROS/RNS induction assays were used for SDS-PAGE and immunoblot analysis for
AgTrx-1 protein expression levels.

• Remaining midguts from ROS induction assays were used for Online 2D LC-MS/MS analysis.
• Standard membrane feeding assay (SMFA) with An. gambiae (KEELE) female mosquitoes (4-7 days old)

feeding on P. falciparum (PfNF54) parasites through and kept for 24 hours.
• Midguts from SMFA were used for qRT-PCR for upregulation of Thioredoxin (Trx)- and Glutathione (GSH)-

dependent transcripts. Transcripts analyzed were evidenced from previous studies to be involved in
regulation of oxidative stress and detoxification of xenobiotic compounds.

Oxidative Stress Management is Essential for Anopheles Mosquito Survival Post Plasmodium Infected Blood Meal Ingestion
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Relative expression of Trx- and GSH-dependent transcripts 

Table 1. Proteins enriched (overexpressed) in Pqt-
treated midguts directly involved in mitigation of the
induced oxidative stress
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Figure 3: qRT-PCR analysis of Trx- and GSH-
dependent transcripts.. (A) Relative expression levels of
Trx-dependent transcripts. (B) Relative expression
levels of GSH-dependent transcripts. Relative
expression levels of targeted transcripts was calculated
by Student’s t-test followed by Holm-Sîdak score to
adjust for multiple scores

Table 4. A list of Trx and GSH-dependent transcripts evaluated following P.
falciparum infected blood meal ingestion

Figure 1. Interplay of redox systems in Plasmodium
and Anopheles. ROS/RNS = reactive oxygen
species/reactive nitrogen species, GR = glutathione
reductase, FAD = flavin adenosine dinucleotide,
NADPH = reduced nicotinamide dinucleotide
phosphate, TrxR = thioredoxin reductase, SOD =
superoxide dismutase, TPx = thioredoxin peroxidase,
CAT = Catalase, and Tlp = thioredoxin-like proteins.

Oxidative stress management

Survival

Malaria 
transmission 

is blocked

+ Paraquat

ROS/RNS+ ROS-inducing drug (Paraquat-like)
+ ROS-inducing blood meal
+ Malaria parasite infection

H0:

Midgut proteomic 
response

Dysregulated oxidative stress management

AgTrx-1 expression levels (ex vivo system)

Figure 2. AgTrx-1 protein expression in An. gambiae midgut epithelial cells. (A) Female An. gambiae midgut lysates treated with ex vivo organ culture media lanes 1, 5, and 9), 50 μM t-
BHP (lanes 2, 6, and 10), 125 μM tBHP (lanes 3, 7, and 11), and 200 μM tBHP (lanes 4, 8, and 12). (B) Female An. gambiae midgut lysates treated with ex vivo organ culture media (lanes 1,
5, and 9), 250 μM tBHP (lanes 2, 6, and 10), 500 μM tBHP (lanes 3, 7, and 11), and 1 mM tBHP (lane 5, 9, and 13). Lanes 1-4 (biological replicate 1), lanes 5-8 (biological replicate 2), lanes 9-
12 (biological replicate 3). AnAPN1 (~135 kDa), as a loading control is shown below each treatment column.

50-200μM 250 μM-1mM

Objectives:
a) To characterize the transcript and protein expression levels of

AgTrx-1 in An. gambiae midgut epithelial cells under different
oxidative conditions

b) To characterize the proteomic profile of An. gambiae midgut
epithelial cells under different oxidative conditions

c) To characterize the Trx- and GSH-dependent transcript profile in
An. gambiae midgut epithelial cells during P. falciparum ookinete
invasion

Figure 3. Protein identification comparisons between treatment groups in An.
gambiae midguts subjected to LC-MS/MS. (A) Proteins identified in all three
experimental groups of control (untreated ex vivo organ culture media only),
low (50 μM tBHP), and high (μM tBHP). (B) Proteins identified in control and
low tBHP groups. (C) Proteins identified in control and high tBHP groups. (D)
Proteins identified in high and low tBHP groups

Figure 4. Volcano plots of quantifiable protein comparisons. (A) Low (50 μM
tBHP) versus control (untreated ex vivo organ culture only) experimental
groups. (B) High (200 μM tBHP) versus control (untreated ex vivo organ culture
only) experimental groups. (C) High (200 μM tBHP) versus low (50 μM tBHP)
experimental groups. Significant fold change was calculated using Student’s t-
test with P-value ≤ 0.05. Annotations of significantly enriched proteins are
indicated

Table 3. Under-expressed RPs following treatment with low and high tBHP
concentrations

Table 2. Overexpressed (enriched) RPs following treatment with low and
high tBHP concentrations


