76 research outputs found

    The Geometry of Uniqueness, Sparsity and Clustering in Penalized Estimation

    Full text link
    We provide a necessary and sufficient condition for the uniqueness of penalized least-squares estimators whose penalty term is given by a norm with a polytope unit ball, covering a wide range of methods including SLOPE and LASSO, as well as the related method of basis pursuit. We consider a strong type of uniqueness that is relevant for statistical problems. The uniqueness condition is geometric and involves how the row span of the design matrix intersects the faces of the dual norm unit ball, which for SLOPE is given by the sign permutahedron. Further considerations based this condition also allow to derive results on sparsity and clustering features. In particular, we define the notion of a SLOPE model to describe both sparsity and clustering properties of this method and also provide a geometric characterization of accessible SLOPE models.Comment: new title, minor change

    Wheel-regolith interactions on small-body surfaces

    Get PDF
    We conduct experiments using a single-wheel testbed and simulations using the Soft-Sphere Discrete Element Method to study wheel-regolith interactions on small-body surfaces. We analyze wheel sinkage and traction on different surface materials and we discuss the influence that lowgravity has on rover maneuverability

    The influence of gravity on granular impacts II. A gravity-scaled collision model for slow interactions

    Get PDF
    Slow interactions on small body surfaces occur both naturally and through human intervention. The resettling of grains and boulders following a cratering event, as well as observations made during small body missions, can provide clues regarding the material properties and the physical evolution of a surface. In order to analyze such events, it is necessary to understand how gravity influences granular behavior. In this work, we study slow impacts into granular materials for different collision velocities and gravity levels. Our objectives are to develop a model that describes penetration depth in terms of the dimensionless Froude number and to use this model to understand the relationship between collision behavior, collision velocity, and gravity. We use the soft-sphere discrete element method to simulate impacts into glass beads under gravitational accelerations ranging from 9.81 m/s^2 to 0.001 m/s^2. We quantify collision behavior using the peak acceleration, the penetration depth, and the collision duration of the projectile, and we compare the collision behavior for impacts within a Froude number range of 0 to 10. The measured penetration depth and collision duration for low-velocity collisions are comparable when the impact parameters are scaled by the Froude number, and the presented model predicts the collision behavior well within the tested Froude number range. If the impact Froude number is low (0 < Fr < 1.5), the collision occurs in a regime that is dominated by a depth-dependent quasi-static friction force. If the impact Froude number is high enough (1.5 < Fr < 10), the collision enters a second regime that is dominated by inertial drag. The presented collision model can be used to constrain the properties of a granular surface material using the penetration depth measurement from a single impact event. If the projectile size, the collision velocity, the gravity level, and the final penetration depth are known and the material density is estimated, then the internal friction angle of the material can be deduced

    Relevance of Phobos in-situ science for understanding asteroids

    Get PDF
    The origin of the martian moons, Phobos and Deimos is under debate since a very long time. There exist arguments and counter arguments that they may be captured asteroids. Other models favor, e.g., a massive impact at Mars as their origin [1]. The Martian Moons eXploration (MMX) mission by the Japan Aerospace Exploration Agency, JAXA, is going to explore both Martian moons remotely, but also return samples from Phobos, and deliver a small Rover to its surface [2,3]. This rover, provided by CNES and DLR, with contributions from INTA and the University of Tokyo has a payload of four scientific instruments, analyzing the physical, dynamical and mineralogical properties of Phobos´ surface. Parallels to asteroids of a similar size are eminent and the results will help deciphering the origin of Phobos [4]

    Représentation parcimonieuse et procédures de tests multiples : application à la métabolomique

    Get PDF
    Let Y be a Gaussian vector distributed according to N (m,sigma²Idn) and X a matrix of dimension n x p with Y observed, m unknown, sigma and X known. In the linear model, m is assumed to be a linear combination of the columns of X In small dimension, when n ≥ p and ker (X) = 0, there exists a unique parameter Beta* such that m = X Beta*; then we can rewrite Y = Beta* + Epsilon. In the small-dimensional linear Gaussian model framework, we construct a new multiple testing procedure controlling the FWER to test the null hypotheses Beta*i = 0 for i belongs to [[1,p]]. This procedure is applied in metabolomics through the freeware ASICS available online. ASICS allows to identify and to qualify metabolites via the analyse of RMN spectra. In high dimension, when n < p we have ker (X) ≠ 0 consequently the parameter Beta* described above is no longer unique. In the noiseless case when Sigma = 0, implying thus Y = m, we show that the solutions of the linear system of equation Y = X Beta having a minimal number of non-zero components are obtained via the lalpha with alpha small enough.Considérons un vecteur gaussien Y de loi N (m,sigma²Idn) et X une matrice de dimension n x p avec Y observé, m inconnu, Sigma et X connus. Dans le cadre du modèle linéaire, m est supposé être une combinaison linéaire des colonnes de X. En petite dimension, lorsque n ≥ p et que ker (X) = 0, il existe alors un unique paramètre Beta* tel que m = X Beta* ; on peut alors réécrire Y sous la forme Y = X Beta* + Epsilon. Dans le cadre du modèle linéaire gaussien en petite dimension, nous construisons une nouvelle procédure de tests multiples contrôlant le FWER pour tester les hypothèses nulles Beta*i = 0 pour i appartient à [[1,p]]. Cette procédure est appliquée en métabolomique au travers du programme ASICS qui est disponible en ligne. ASICS permet d'identifier et de quantifier les métabolites via l'analyse des spectres RMN. En grande dimension, lorsque n < p on a ker (X) ≠ 0, ainsi le paramètre Beta* décrit précédemment n'est pas unique. Dans le cas non bruité lorsque Sigma = 0, impliquant que Y = m, nous montrons que les solutions du système linéaire d'équations Y = X Beta avant un nombre de composantes non nulles minimales s'obtiennent via la minimisation de la "norme" lAlpha avec Alpha suffisamment petit

    Sparse representation and multiple testing procedures : application to metabolimics

    No full text
    Considérons un vecteur gaussien Y de loi N (m,sigma²Idn) et X une matrice de dimension n x p avec Y observé, m inconnu, Sigma et X connus. Dans le cadre du modèle linéaire, m est supposé être une combinaison linéaire des colonnes de X. En petite dimension, lorsque n ≥ p et que ker (X) = 0, il existe alors un unique paramètre Beta* tel que m = X Beta* ; on peut alors réécrire Y sous la forme Y = X Beta* + Epsilon. Dans le cadre du modèle linéaire gaussien en petite dimension, nous construisons une nouvelle procédure de tests multiples contrôlant le FWER pour tester les hypothèses nulles Beta*i = 0 pour i appartient à [[1,p]]. Cette procédure est appliquée en métabolomique au travers du programme ASICS qui est disponible en ligne. ASICS permet d'identifier et de quantifier les métabolites via l'analyse des spectres RMN. En grande dimension, lorsque n < p on a ker (X) ≠ 0, ainsi le paramètre Beta* décrit précédemment n'est pas unique. Dans le cas non bruité lorsque Sigma = 0, impliquant que Y = m, nous montrons que les solutions du système linéaire d'équations Y = X Beta avant un nombre de composantes non nulles minimales s'obtiennent via la minimisation de la "norme" lAlpha avec Alpha suffisamment petit.Let Y be a Gaussian vector distributed according to N (m,sigma²Idn) and X a matrix of dimension n x p with Y observed, m unknown, sigma and X known. In the linear model, m is assumed to be a linear combination of the columns of X In small dimension, when n ≥ p and ker (X) = 0, there exists a unique parameter Beta* such that m = X Beta*; then we can rewrite Y = Beta* + Epsilon. In the small-dimensional linear Gaussian model framework, we construct a new multiple testing procedure controlling the FWER to test the null hypotheses Beta*i = 0 for i belongs to [[1,p]]. This procedure is applied in metabolomics through the freeware ASICS available online. ASICS allows to identify and to qualify metabolites via the analyse of RMN spectra. In high dimension, when n < p we have ker (X) ≠ 0 consequently the parameter Beta* described above is no longer unique. In the noiseless case when Sigma = 0, implying thus Y = m, we show that the solutions of the linear system of equation Y = X Beta having a minimal number of non-zero components are obtained via the lalpha with alpha small enough

    Étude de l'estimateur SLOPE par le prisme du schéma : Propriétés de parcimonie et d'appariement et calcul du chemin des solutions

    No full text
    L’estimateur SLOPE, acronyme signifiant ≪ Sorted L One Penalized Estimation ≫, est défini comme une solution d’un problème d’optimisation convexe où le terme de pénalité est la norme ℓ1 ordonnée. Cette norme, non-différentiable en un point ayant des composantes nulles ou égales en valeur absolue, induit des propriété de parcimonie et d’appariement à l’estimateur SLOPE : certaines composantes de cet estimateur peuvent être nulles ou égales en valeur absolue. Ce mémoire d’habilitation illustre la pertinence de la notion de schéma du SLOPE pour l’étude de cet estimateur. La première partie de ce travail prouve que les schémas sont des classes d’équivalence pour la relation ≪ avoir le même sous-différentiel pour la norme ℓ1 ordonnée ≫ et établit une bijection entre ces schémas et les faces de la boule unité de la norme ℓ1 ordonnée duale. La seconde partie de ce mémoire donne des conditions théoriques garantissant la récupération du schéma des coefficients de régression via l’estimateur SLOPE. La dernière partie de ce manuscrit fournit un algorithme, bas´ e sur les conditions du sous-différentiel et du schéma, pour calculer le chemin des solutions du SLOPE lorsque le paramètre de régularisation varie
    • …
    corecore