56 research outputs found

    Imunização subcutânea na infecção do camundongo pela Leishmania major: eficácia dos promastigotos mortos pela formalina combinada com adjuvantes

    Get PDF
    Promastigotos mortos pela formalina (FKP) de Leishmania major combinados com Montanide ISA 720 (MISA), BCG ou alumen foram usados na vacinação de modelo murino cutâneo de leishmaniose (CL). Aumento significante e específico de resposta IgG anti FKP foram detectados tanto no FKP com alumen como naquele com BCG comparados ao MISA-FKP (p < 0,001). Aumento significante da proliferação esplênica de linfócitos de memória foi obtida nos camundongos vacinados com MISA-FKP quando comparados aos grupos vacinados com alumen-FKP ou BCG-FKP (p < 0,01). As maiores respostas por interferon-gama foram observadas no grupo BCG-FKP seguido pelo MISA-FKP enquanto que o alumen-FKP deu a menor resposta. No grupo MISA-FKP foram obtidas reduções significantes do tamanho das lesões quando comparado aos grupos vacinados com BCG/adjuvante de alumen-FKP. Embora o grupo BCG-FKP tenha mostrado a maior resposta por interferon-gama, não houve controle das lesões cutâneas. Redução significante no número de parasitas foi observada tanto no grupo vacinado com MISA-FKP como no BCG-FKP (p < 0,001). Houve boa correlação entre a carga parasitária e o nível de interferon-gama indicando que a resposta do interferon-gama é parâmetro sensível do estado imunológico. Em conclusão, MISA-FKP é a forma mais eficaz de vacina contra a leishmaniose cutânea murina.Formalin-killed promastigotes (FKP) of Leishmania major, in combination with Montanide ISA 720 (MISA), BCG or alum were used in vaccination of an inbred murine model against cutaneous leishmaniasis (CL). Significant and specific increases in anti-FKP IgG responses were detected for both alum-FKP and BCG-FKP compared to MISA-FKP (p < 0.001). Significant increases in splenic lymphocyte recall proliferation was obtained in the MISA-FKP vaccinated mice compared to alum-FKP or BCG-FKP vaccinated groups (p < 0.01). The highest interferon-&#947; responses were observed in the BCG-FKP group followed by the MISA-FKP while the alum-FKP gave the least responses. Significantly reduced lesion sizes were obtained in the MISA-FKP group compared to the BCG/alum adjuvants-FKP vaccinated groups. Although the BCG-FKP group showed the highest IFN-&#947; responses, it failed to control cutaneous lesions. Significant reductions in parasite numbers were observed in the MISA-FKP and BCG-FKP vaccinated groups (p < 0.001). There was a good correlation between parasite burden and IFN-&#947; level indicating IFN-&#947; response as a sensitive parameter of the immune status. In conclusion, MISA-FKP is the most efficacious vaccine formulation against murine cutaneous leishmaniasis

    Segurança e reação de hipersensibilidade tardia na pele de macacos vervet imunizados com antígeno sonicado de Leishmania donovani junto com adjuvantes

    Get PDF
    In this study, we report on the safety and skin delayed-type hypersensitivity (DTH), responses of the Leishmania donovani whole cell sonicate antigen delivered in conjunction with alum-BCG (AlBCG), Montanide ISA 720 (MISA) or Monophosphoryl lipid A (MPLA) in groups of vervet monkeys. Following three intradermal injections of the inoculums on days 0, 28 and 42, safety and DTH responses were assessed. Preliminary tumor necrosis factor alpha (TNF-&#945;) and interferon gamma (IFN-&#947;) levels were also measured and these were compared with DTH. Only those animals immunized with alum-BCG reacted adversely to the inoculum by producing ulcerative erythematous skin indurations. Non-parametric analysis of variance followed by a post-test showed significantly higher DTH responses in the MISA+Ag group compared with other immunized groups (p < 0.001). The MPLA+Ag group indicated significantly lower DTH responses to the sonicate antigen compared with the AlBCG+Ag group. There was a significant correlation between the DTH and cytokine responses (p < 0.0001). Based on this study we conclude that Leishmania donovani sonicate antigen containing MISA 720 is safe and is associated with a strong DTH reaction following immunization.Neste estudo reportamos segurança e resposta de hipersensibilidade tardia (DTH) do antígeno sonicado de células totais de Leishmania donovani introduzidos juntamente com alume-BCG (AIBCG) Montanide ISA 720 (MISA) ou lípide A monofosforilado (MPLA) em grupos de macacos vervet. Depois de três injeções intradérmicas do inóculo nos dias 0, 28 e 42 segurança e resposta DTH foram avaliados. Preliminarmente níveis de fator de necrose tumoral alfa (TNF-&#945;) e interferon gama (IFN-&#947;) foram também medidos e comparados com o DTH. Somente os animais imunizados com alume-BCG reagiram de maneira diversa ao inóculo produzindo indurações ulceradas e eritematosas na pele. Análise não paramétrica de variação seguida por um teste posterior mostraram resposta significantemente mais alta do DTH no grupo MISA + Ag quando comparado com outros grupos imunizados (p < 0.001). O grupo MPLA + Ag demonstrou resposta DTH significantemente menor do antígeno sonicado comparado com o grupo AIBCG + Ag. Houve correlação significante entre o DTH e a resposta às citocinas (p < 0.0001). Baseados neste estudo concluímos que o antígeno sonicado de Leishmania donovani contendo MISA 720 é seguro e está associado com forte reação DTH após imunização

    Control of Busseola fusca and Chilo partellus stem borers by Bacillus thuringiensis (Bt)-&#948-endotoxins from Cry1Ab gene Event MON810 in greenhouse containment trials

    Get PDF
    Previous testing of several public Bacillus thuringiensis (Bt)-maize events did not show control of the African stem borer (Busseola fusca Fuller), an important stem borer species, without which stewardship would be compromised by the possibility of rapid development of resistance to Bt deltaendotoxins. This study was carried out to test Bt-maize Event MON810 as an option to control all major stem borer species in Kenya. Two Bt-maize hybrids, DKC8073YG and DKC8053YG, both containing Bt Event MON810 of Cry1Ab gene were imported to carry out greenhouse containment trials. The hybrids together with the controls were grown in 10 replications upto the V6 and V8 stages. Infestations on whole plants were carried out at two stages of growth using 5 neonates of the spotted stem borer (Chilo partellus Swinhoe) and B. fusca. Bt-maize Event MON810 hybrids showed resistance to both stem borer species with low leaf damage scores and few surviving larvae recovered from the whole plant. The public Bt-maize Event 223 did not control B. fusca. Deploying Bt-maize Event MON810 may, therefore, be used to control the two species of stem borers. However, the efficacy of Bt-maize Event MON810 will, need to be evaluated under field environments.Key words: Bacillus thuringiensis (Bt) maize, cry1A (b) proteins, stem borers, transgenic

    Testing public Bt maize events for control of stem borers in the first confined field trials in Kenya

    Get PDF
    Transgenic maize (Zea mays L), developed using modified genes from the bacterium Bacillus thuringiensis (Bt), controls stem borers without observable negative effects to humans, livestock or the environment, and is now sown on 134 million hectares globally. Bt maize could contribute to increasing maize production in Kenya. Nine public Bt maize events of cry1Ab and cry1Ba genes were tested in confined field trials site (CFTs) to assess the control of four major Kenyan stem borer species. Leaf damage rating, number of exit holes and tunnel length were scored in the field evaluations. Leaf area consumed and mortality rates among stem borers were scored in the leaf bioassays in a Biosafety Level II laboratory, located at the Kenya Agricultural Research Institute (KARI), National Agricultural Research Laboratories (NARL). Field evaluations showed that Bt maize controlled Chilo partellus with mean damage scores of 1.2 against 2.7 for the non-Bt CML216 control. Laboratory bioassays showed high control for Eldana saccharina and Sesamia calamistis, with mean larval mortality of 64 and 92%, respectively. However, substantial control was not observed for Busseola fusca. These results showed that Bt maize could control three of the four major stem borers in Kenya with mortality records of 52.7% for B. fusca, 62.3% for E. saccharina and 85.8% for S. calamistis. Additional Bt genes need to be sought and tested for effective stem borer control in all maize growing ecologies in Kenya

    Two Theileria parva CD8 T Cell Antigen Genes Are More Variable in Buffalo than Cattle Parasites, but Differ in Pattern of Sequence Diversity

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; Theileria parva causes an acute fatal disease in cattle, but infections are asymptomatic in the African buffalo (Syncerus caffer). Cattle can be immunized against the parasite by infection and treatment, but immunity is partially strain specific. Available data indicate that CD8(+) T lymphocyte responses mediate protection and, recently, several parasite antigens recognised by CD8(+) T cells have been identified. This study set out to determine the nature and extent of polymorphism in two of these antigens, Tp1 and Tp2, which contain defined CD8(+) T-cell epitopes, and to analyse the sequences for evidence of selection.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methodology/Principal Findings:&lt;/b&gt; Partial sequencing of the Tp1 gene and the full-length Tp2 gene from 82 T. parva isolates revealed extensive polymorphism in both antigens, including the epitope-containing regions. Single nucleotide polymorphisms were detected at 51 positions (similar to 12%) in Tp1 and in 320 positions (similar to 61%) in Tp2. Together with two short indels in Tp1, these resulted in 30 and 42 protein variants of Tp1 and Tp2, respectively. Although evidence of positive selection was found for multiple amino acid residues, there was no preferential involvement of T cell epitope residues. Overall, the extent of diversity was much greater in T. parva isolates originating from buffalo than in isolates known to be transmissible among cattle.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions/Significance:&lt;/b&gt; The results indicate that T. parva parasites maintained in cattle represent a subset of the overall T. parva population, which has become adapted for tick transmission between cattle. The absence of obvious enrichment for positively selected amino acid residues within defined epitopes indicates either that diversity is not predominantly driven by selection exerted by host T cells, or that such selection is not detectable by the methods employed due to unidentified epitopes elsewhere in the antigens. Further functional studies are required to address this latter point.&lt;/p&gt

    Two Theileria parva CD8 T Cell Antigen Genes Are More Variable in Buffalo than Cattle Parasites, but Differ in Pattern of Sequence Diversity

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; Theileria parva causes an acute fatal disease in cattle, but infections are asymptomatic in the African buffalo (Syncerus caffer). Cattle can be immunized against the parasite by infection and treatment, but immunity is partially strain specific. Available data indicate that CD8(+) T lymphocyte responses mediate protection and, recently, several parasite antigens recognised by CD8(+) T cells have been identified. This study set out to determine the nature and extent of polymorphism in two of these antigens, Tp1 and Tp2, which contain defined CD8(+) T-cell epitopes, and to analyse the sequences for evidence of selection.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methodology/Principal Findings:&lt;/b&gt; Partial sequencing of the Tp1 gene and the full-length Tp2 gene from 82 T. parva isolates revealed extensive polymorphism in both antigens, including the epitope-containing regions. Single nucleotide polymorphisms were detected at 51 positions (similar to 12%) in Tp1 and in 320 positions (similar to 61%) in Tp2. Together with two short indels in Tp1, these resulted in 30 and 42 protein variants of Tp1 and Tp2, respectively. Although evidence of positive selection was found for multiple amino acid residues, there was no preferential involvement of T cell epitope residues. Overall, the extent of diversity was much greater in T. parva isolates originating from buffalo than in isolates known to be transmissible among cattle.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions/Significance:&lt;/b&gt; The results indicate that T. parva parasites maintained in cattle represent a subset of the overall T. parva population, which has become adapted for tick transmission between cattle. The absence of obvious enrichment for positively selected amino acid residues within defined epitopes indicates either that diversity is not predominantly driven by selection exerted by host T cells, or that such selection is not detectable by the methods employed due to unidentified epitopes elsewhere in the antigens. Further functional studies are required to address this latter point.&lt;/p&gt

    Fusion of the Mycobacterium tuberculosis Antigen 85A to an Oligomerization Domain Enhances Its Immunogenicity in Both Mice and Non-Human Primates

    Get PDF
    To prevent important infectious diseases such as tuberculosis, malaria and HIV, vaccines inducing greater T cell responses are required. In this study, we investigated whether fusion of the M. tuberculosis antigen 85A to recently described adjuvant IMX313, a hybrid avian C4bp oligomerization domain, could increase T cell responses in pre-clinical vaccine model species. In mice, the fused antigen 85A showed consistent increases in CD4+ and CD8+ T cell responses after DNA and MVA vaccination. In rhesus macaques, higher IFN-γ responses were observed in animals vaccinated with MVA-Ag85A IMX313 after both primary and secondary immunizations. In both animal models, fusion to IMX313 induced a quantitative enhancement in the response without altering its quality: multifunctional cytokines were uniformly increased and differentiation into effector and memory T cell subsets was augmented rather than skewed. An extensive in vivo characterization suggests that IMX313 improves the initiation of immune responses as an increase in antigen 85A specific cells was observed as early as day 3 after vaccination. This report demonstrates that antigen multimerization using IMX313 is a simple and effective cross-species method to improve vaccine immunogenicity with potentially broad applicability

    A longitudinal assessment of the serological response to Theileria parva and other tick-borne parasites from birth to one year in a cohort of indigenous calves in western Kenya

    Get PDF
    Tick-borne diseases are a major impediment to improved productivity of livestock in sub-Saharan Africa. Improved control of these diseases would be assisted by detailed epidemiological data. Here we used longitudinal, serological data to determine the patterns of exposure to Theileria parva, Theileria mutans, Babesia bigemina and Anaplasma marginale from 548 indigenous calves in western Kenya. The percentage of calves seropositive for the first three parasites declined from initial high levels due to maternal antibody until week 16, after which the percentage increased until the end of the study. In contrast, the percentage of calves seropositive for T. mutans increased from week 6 and reached a maximal level at week 16. Overall 423 (77%) calves seroconverted to T. parva, 451 (82%) toT. mutans, 195 (36%) to B. bigemina and 275 (50%) to A. marginale. Theileria parva antibody levels were sustained following infection, in contrast to those of the other three haemoparasites. Three times as many calves seroconverted to T. mutans before seroconverting to T. parva. No T. parva antibody response was detected in 25 calves that died of T. parva infection, suggesting that most deaths due to T. parva are the result of acute disease from primary exposure

    Characterization of the fine specificity of bovine CD8 T-cell responses to defined antigens from the protozoan parasite Theileria parva

    Get PDF
    Immunity against the bovine intracellular protozoan parasite Theileria parva has been shown to be mediated by CD8 T cells. Six antigens targeted by CD8 T cells from T. parva-immune cattle of different major histocompatibility complex (MHC) genotypes have been identified, raising the prospect of developing a subunit vaccine. To facilitate further dissection of the specificity of protective CD8 T-cell responses and to assist in the assessment of responses to vaccination, we set out to identify the epitopes recognized in these T. parva antigens and their MHC restriction elements. Nine epitopes in six T. parva antigens, together with their respective MHC restriction elements, were successfully identified. Five of the cytotoxic-T-lymphocyte epitopes were found to be restricted by products of previously described alleles, and four were restricted by four novel restriction elements. Analyses of CD8 T-cell responses to five of the epitopes in groups of cattle carrying the defined restriction elements and immunized with live parasites demonstrated that, with one exception, the epitopes were consistently recognized by animals of the respective genotypes. The analysis of responses was extended to animals immunized with multiple antigens delivered in separate vaccine constructs. Specific CD8 T-cell responses were detected in 19 of 24 immunized cattle. All responder cattle mounted responses specific for antigens for which they carried an identified restriction element. By contrast, only 8 of 19 responder cattle displayed a response to antigens for which they did not carry an identified restriction element. These data demonstrate that the identified antigens are inherently dominant in animals with the corresponding MHC genotypes
    • …
    corecore