12 research outputs found

    Alzheimer's Therapeutics Targeting Amyloid Beta 1-42 Oligomers II: Sigma-2/PGRMC1 Receptors Mediate Abeta 42 Oligomer Binding and Synaptotoxicity

    Get PDF
    Amyloid beta (Abeta) 1–42 oligomers accumulate in brains of patients with Mild Cognitive Impairment (MCI) and disrupt synaptic plasticity processes that underlie memory formation. Synaptic binding of Abeta oligomers to several putative receptor proteins is reported to inhibit long-term potentiation, affect membrane trafficking and induce reversible spine loss in neurons, leading to impaired cognitive performance and ultimately to anterograde amnesia in the early stages of Alzheimer's disease (AD). We have identified a receptor not previously associated with AD that mediates the binding of Abeta oligomers to neurons, and describe novel therapeutic antagonists of this receptor capable of blocking Abeta toxic effects on synapses in vitro and cognitive deficits in vivo. Knockdown of sigma-2/PGRMC1 (progesterone receptor membrane component 1) protein expression in vitro using siRNA results in a highly correlated reduction in binding of exogenous Abeta oligomers to neurons of more than 90%. Expression of sigma-2/PGRMC1 is upregulated in vitro by treatment with Abeta oligomers, and is dysregulated in Alzheimer's disease patients' brain compared to age-matched, normal individuals. Specific, high affinity small molecule receptor antagonists and antibodies raised against specific regions on this receptor can displace synthetic Abeta oligomer binding to synaptic puncta in vitro and displace endogenous human AD patient oligomers from brain tissue sections in a dose-dependent manner. These receptor antagonists prevent and reverse the effects of Abeta oligomers on membrane trafficking and synapse loss in vitro and cognitive deficits in AD mouse models. These findings suggest sigma-2/PGRMC1 receptors mediate saturable oligomer binding to synaptic puncta on neurons and that brain penetrant, small molecules can displace endogenous and synthetic oligomers and improve cognitive deficits in AD models. We propose that sigma-2/PGRMC1 is a key mediator of the pathological effects of Abeta oligomers in AD and is a tractable target for small molecule disease-modifying therapeutics

    Coding variants in TREM2 increase risk for Alzheimer’s disease

    No full text
    The triggering receptor expressed on myeloid 2 (TREM2) is an immune phagocytic receptor expressed on brain microglia known to trigger phagocytosis and regulate the inflammatory response. Homozygous mutations in TREM2 cause Nasu–Hakola disease, a rare recessive form of dementia. A heterozygous TREM2 variant, p.R47H, was recently shown to increase Alzheimer’’s disease (AD) risk. We hypothesized that if TREM2 is truly an AD risk gene, there would be additional rare variants in TREM2 that substantially affect AD risk. To test this hypothesis, we performed pooled sequencing ofTREM2coding regions in 2082 AD cases and 1648 cog-nitively normal elderly controls of European American descent. We identified 16 non-synonymous variants, six of which were not identified in previous AD studies. Two variants, p.R47H [P 5 9.17 3 1024, odds ratio (OR) 5 2.63 (1.44–4.81)] and p.R62H [P 5 2.36 3 1024, OR 5 2.36 (1.47–3.80)] were significantly associated with dis-ease risk in single-variant analyses. Gene-based tests demonstrate variants inTREM2 are genome-wide signifi-cantly associated with AD [PSKAT-O 5 5.37 3 10 27; OR 5 2.55 (1.80–3.67)]. The association of TREM2 variants with AD is still highly significant after excluding p.R47H [PSKAT-O5 7.72 3 10 25; OR 5 2.47 (1.62–3.87)], indicat-ing that additional TREM2 variants affect AD risk. Genotyping in available family members of probands sug

    TREM2 is associated with increased risk for Alzheimer's disease in African Americans

    Get PDF
    BACKGROUND: TREM2 encodes for triggering receptor expressed on myeloid cells 2 and has rare, coding variants that associate with risk for late-onset Alzheimer's disease (LOAD) in Caucasians of European and North-American origin. This study evaluated the role of TREM2 in LOAD risk in African-American (AA) subjects. We performed exonic sequencing and validation in two independent cohorts of >800 subjects. We selected six coding variants (p.R47H, p.R62H, p.D87N, p.E151K, p.W191X, and p.L211P) for case-control analyses in a total of 906 LOAD cases vs. 2,487 controls. RESULTS: We identified significant LOAD risk association with p.L211P (p=0.01, OR=1.27, 95%CI=1.05-1.54) and suggestive association with p.W191X (p=0.08, OR=1.35, 95%CI=0.97-1.87). Conditional analysis suggests that p.L211P, which is in linkage disequilibrium with p.W191X, may be the stronger variant of the two, but does not rule out independent contribution of the latter. TREM2 p.L211P resides within the cytoplasmic domain and p.W191X is a stop-gain mutation within the shorter TREM-2V transcript. The coding variants within the extracellular domain of TREM2 previously shown to confer LOAD risk in Caucasians were extremely rare in our AA cohort and did not associate with LOAD risk. CONCLUSIONS: Our findings suggest that TREM2 coding variants also confer LOAD risk in AA, but implicate variants within different regions of the gene than those identified for Caucasian subjects. These results underscore the importance of investigating different ethnic populations for disease risk variant discovery, which may uncover allelic heterogeneity with potentially diverse mechanisms of action

    GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer's disease

    Get PDF
    Cerebrospinal fluid (CSF) tau, tau phosphorylated at threonine 181 (ptau), and Aβ42 are established biomarkers for Alzheimer’s disease (AD) and have been used as quantitative traits for genetic analyses. We performed the largest genome-wide association study for cerebrospinal fluid (CSF) tau/ptau levels published to date (n = 1,269), identifying three genome-wide significant loci for CSF tau and ptau: rs9877502 (p = 4.89 × 10−9 for tau) located at 3q28 between GEMC1 and OSTN, rs514716 (p = 1.07 × 10−8 and p = 3.22 × 10−9 for tau and ptau, respectively), located at 9p24.2 within GLIS3 and rs6922617 (p = 3.58 × 10−8 for CSF ptau) at 6p21.1 within the TREM gene cluster, a region recently reported to harbor rare variants that increase AD risk. In independent data sets, rs9877502 showed a strong association with risk for AD, tangle pathology, and global cognitive decline (p = 2.67 × 10−4, 0.039, 4.86 × 10−5, respectively) illustrating how this endophenotype-based approach can be used to identify new AD risk loci

    Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease

    No full text
    Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD)(1,2). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low frequency coding variants with large effects on LOAD risk, we performed whole exome-sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large case-control datasets. A rare variant in PLD3 (phospholipase-D family, member 3, rs145999145; V232M) segregated with disease status in two independent families and doubled risk for AD in seven independent case-control series (V232M meta-analysis; OR= 2.10, CI=1.47-2.99; p= 2.93×10(-5), 11,354 cases and controls of European-descent). Gene-based burden analyses in 4,387 cases and controls of European-descent and 302 African American cases and controls, with complete sequence data for PLD3, indicate that several variants in this gene increase risk for AD in both populations (EA: OR= 2.75, CI=2.05-3.68; p=1.44×10(-11), AA: OR= 5.48, CI=1.77-16.92; p=1.40×10(-3)). PLD3 is highly expressed in brain regions vulnerable to AD pathology, including hippocampus and cortex, and is expressed at lower levels in neurons from AD brains compared to control brains (p=8.10×10(-10)). Over-expression of PLD3 leads to a significant decrease in intracellular APP and extracellular Aβ42 and Aβ40, while knock-down of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a two-fold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may be used to identify rare variants with large effects on risk for disease or other complex traits
    corecore