8,887 research outputs found

    Prospects for ϕ\phi meson production in pp collisions at the ALICE experiment

    Full text link
    The ALICE experiment at the CERN Large Hadron Collider (LHC) will allow the study of resonance production in nucleus-nucleus and proton-proton collisions. This paper presents results based on physics performance studies to discuss prospects in ALICE for ϕ\phi(1020) meson production in pp interactions during the LHC startup.Comment: To appear in the proceedings of International Conference on Strangeness in Quark Matter (SQM 2007), Levoca, Slovakia, 24-29 Jun 2007. Submitted to J.Phys.

    First LHC results on coherent J/psi photoproduction in ultra-peripheral Pb-Pb collisions at sqrt{s_NN} = 2.76 TeV

    Full text link
    The first LHC measurement on ultra-peripheral heavy-ion collisions was carried out with the ALICE experiment. In this paper, ALICE results on exclusive J/psi studies in Pb-Pb collisions at sqrt(s_NN) = 2.76 TeV, in the rapidity region -3.6 < y < -2.6, are given. The coherent J/psi cross section was found to be dsigma/dy_coh_J/\psi = 1.00 +/- 0.18 (stat) +0.24 -0.26 (syst) mb. These studies favour theoretical models that include strong modifications to the nuclear gluon density, also known as nuclear gluon shadowing.Comment: Presented at DIFFRACTION 2012: International Workshop on Diffraction in High-Energy Physics. Puerto del Carmen, Canary Islands, 10-15 September 201

    A quasi-Newton approach to optimization problems with probability density constraints

    Get PDF
    A quasi-Newton method is presented for minimizing a nonlinear function while constraining the variables to be nonnegative and sum to one. The nonnegativity constraints were eliminated by working with the squares of the variables and the resulting problem was solved using Tapia's general theory of quasi-Newton methods for constrained optimization. A user's guide for a computer program implementing this algorithm is provided

    Quantum tomography for collider physics: Illustrations with lepton pair production

    Get PDF
    Quantum tomography is a method to experimentally extract all that is observable about a quantum mechanical system. We introduce quantum tomography to collider physics with the illustration of the angular distribution of lepton pairs. The tomographic method bypasses much of the field-theoretic formalism to concentrate on what can be observed with experimental data, and how to characterize the data. We provide a practical, experimentally-driven guide to model-independent analysis using density matrices at every step. Comparison with traditional methods of analyzing angular correlations of inclusive reactions finds many advantages in the tomographic method, which include manifest Lorentz covariance, direct incorporation of positivity constraints, exhaustively complete polarization information, and new invariants free from frame conventions. For example, experimental data can determine the entanglemententanglement entropyentropy of the production process, which is a model-independent invariant that measures the degree of coherence of the subprocess. We give reproducible numerical examples and provide a supplemental standalone computer code that implements the procedure. We also highlight a property of complexcomplex positivitypositivity that guarantees in a least-squares type fit that a local minimum of a χ2\chi^{2} statistic will be a global minimum: There are no isolated local minima. This property with an automated implementation of positivity promises to mitigate issues relating to multiple minima and convention-dependence that have been problematic in previous work on angular distributions.Comment: 25 pages, 3 figure

    Mass dependence of vector meson photoproduction off protons and nuclei within the energy-dependent hot-spot model

    Full text link
    We study the photoproduction of vector mesons off proton and off nuclear targets. We work within the colour dipole model in an approach that includes subnucleon degrees of freedom, so-called hot spots, whose positions in the impact-parameter plane change event-by-event. The key feature of our model is that the number of hot spots depends on the energy of the photon--target interaction. Predictions are presented for exclusive and dissociative production of ρ0\rho^{0}, J/ψ\mathrm{J/}\psi, and Υ(1S)\Upsilon(1S) off protons, as well as for coherent and incoherent photoproduction of ρ0\rho^{0} off nuclear targets, where Xe, Au, and Pb nuclei are considered. We find that the mass dependence of dissociative production off protons as a function of the energy of the interaction provides a further handle to search for saturation effects at HERA, the LHC and future colliders. We also find that the coherent photonuclear production of ρ0\rho^{0} is sensitive to fluctuations in the subnucleon degrees of freedom at RHIC and LHC energies.Comment: 19 pages, 4 figures. Typo in legend of figs. 1 and 2 correcte

    Mechanical Unfolding of a Simple Model Protein Goes Beyond the Reach of One-Dimensional Descriptions

    Get PDF
    We study the mechanical unfolding of a simple model protein. The Langevin dynamics results are analyzed using Markov-model methods which allow to describe completely the configurational space of the system. Using transition path theory we also provide a quantitative description of the unfolding pathways followed by the system. Our study shows a complex dynamical scenario. In particular, we see that the usual one-dimensional picture: free-energy vs end-to-end distance representation, gives a misleading description of the process. Unfolding can occur following different pathways and configurations which seem to play a central role in one-dimensional pictures are not the intermediate states of the unfolding dynamics.Comment: 10 pages, 6 figure
    corecore