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Abstract Quantum tomography is a method to experimen-
tally extract all that is observable about a quantum mechan-
ical system. We introduce quantum tomography to collider
physics with the illustration of the angular distribution of
lepton pairs. The tomographic method bypasses much of
the field-theoretic formalism to concentrate on what can be
observed with experimental data. We provide a practical,
experimentally driven guide to model-independent analysis
using density matrices at every step. Comparison with tradi-
tional methods of analyzing angular correlations of inclusive
reactions finds many advantages in the tomographic method,
which include manifest Lorentz covariance, direct incorpo-
ration of positivity constraints, exhaustively complete polar-
ization information, and new invariants free from frame con-
ventions. For example, experimental data can determine the
entanglement entropy of the production process. We give
reproducible numerical examples and provide a supplemen-
tal standalone computer code that implements the procedure.
We also highlight a property of complex positivity that guar-
antees in a least-squares type fit that a local minimum of a
x? statistic will be a global minimum: There are no isolated
local minima. This property with an automated implemen-
tation of positivity promises to mitigate issues relating to
multiple minima and convention dependence that have been
problematic in previous work on angular distributions.

1 Introduction

Tomography builds up higher-dimensional objects from
lower-dimensional projections. Quantum tomography [1] is
a strategy to reconstruct all that can be observed about a
quantum physical system. After becoming a focal point of
quantum computing, quantum tomography has recently been
applied in a variety of domains [2-9].
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The method of quantum tomography uses a known
“probe” to explore an unknown system. Data is related
directly to matrix elements, with minimal model dependence
and optimal efficiency.

Collider physics is conventionally set up in a framework
of unobservable and model-dependent scattering amplitudes.
In quantum tomography these unobservable features are
skipped to deal directly with observables. The unknown sys-
tem is parameterized by a certain density matrix p (X), which
is model-independent. The probe is described by a known
density matrix p(probe). The matrices are represented by
numbers generated and fit to experimental data, not abstract
operators. Quantum mechanics predicts an experiment will
measure tr(p(probe) - p(X)), where tr is the trace. In many
cases p(probe) is extremely simple: A 3 x 3 matrix, say.
What will be observed is strictly limited by the dimension and
symmetries of the probe. The powerful efficiency of quantum
tomography comes from exploiting the probe’s simplicity in
the first steps. The description never involves more variables
than will actually be measured.

We illustrate the advantages of quantum tomography with
inclusive lepton-pair production. It is a relatively mature
subject chosen for its pedagogical convenience. Despite the
maturity of the subject, we discover new things. For exam-
ple, the puzzling plethora of plethora of ad hoc invariant
quantities is completely cleared up. We also find new ways
to assist experimental data analysis. Positivity is a central
issue overlooked in the literature, which we show how to
control. Moreover, the tomography procedure carries over
straightforwardly to many final states, including the inclusive
production of charmonium, bottomonium, dijets, including
boosted tops, HH, W+WwW—,ZZ[10-31]. Our practical guide
to analyzing experimental data uses density matrices at each
step and circumvents the more elaborate traditional theoret-
ical formalism. We concentrate on making tools available to
experimentalists. We give a step-by-step guide where den-
sity matrices stand as definite arrays of numbers, bypassing
unnecessary formalism.
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2 The quantum tomography procedure applied to
inclusive lepton-pair production

The tomography procedure reconstructs all that can be
observed about a quantum physical system. For inclusive
lepton-pair production, what can be observed is the invari-
ant mass distribution, the lepton-pair angular distribution
dN/dQ2 and the polarization of the unknown intermedi-
ate state of the system, contained in p(X).! In this sec-
tion we reconstruct dN/d2 and p(X) from first principles
using tomography. Structure functions and model-dependent
assumptions as regards the intermediate state, common to the
traditional formalism [32-36], do not appear.

The expert reader, who is accustomed to seeing some of
these formulas derived, might note that the method of deriva-
tion is particularly simple. The particular steps we do not
follow are to be noted. That also explains why some of the
relations we find seem to have been overlooked in the past.

2.1 Kinematics

Consider inclusive production of a lepton pair with 4-
momenta k, kK’ from the collision of two hadrons with 4-
momenta Py, Pp:

PaPp — (T (k)™ (k) + X,

where X" and the final-state lepton spins are unobserved and
thus summed over. In the high energy limit k> = k2 =0.

Let the total pair momentum Q = k + k’. The azimuthal
distribution of total pair momenta in the lab frame is isotropic.
Lepton-pair angular distributions are described in the pair rest
frame defined event-by-event. In this frame the pair momenta
are back-to-back and equal in magnitude. The frame orienta-
tion depends on the beam momenta and the pair total momen-
tum.

Defining momentum? observables via a Lorentz-covariant
frame convention allows calculations to be done in any frame.
In its rest frame the total pair momentum Q" = (\/@ , Q =
0). A set of xyz spatial axes in this frame will be defined by
three 4-vectors X", Y, ZH satisfying

0-X=0-Y=0-Z=0. (1)
The frame vectors being orthogonal implies

' Polarization and spin are different concepts. The polarization (and
density matrix of the unknown state) predicts the spin, while the spin
cannot predict the density matrix.

2 This is a great advantage compared to making calculations with a
complicated (and error prone) sequence of rotations and boosts.
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Taking P4 = (1,0,0, 1), Pp = (1,0, 0, —1) (light-cone +
vectors), a frame satisfying the relations of Egs. (1) and (2)
is given by?

ZM=PlQ- Py —PyQ - Py;

2 2
XK = Qﬂ_pXQ—_ng—
20 - Py 20 - Pp

Y= leaﬂPAvPBaQﬁ

3

These frame vectors define the Collins—Soper (CS) frame.*

The normalized frame vectors are

(X*, yr, z") = (

Xr YH zn )

V-X-X J-¥.7
To analyze data for each event labeled J:

Compute Qy =kj+k); 5=k —k); (X, Y}, Z');
Uxyzy =Xy Ly, Yy Ly, Zj-L));

by = ZXYZ,J/ Zxyz,J 'ZXYZ,J- 3)

In fact, 21 = (sinf cos ¢, sin 6 sin ¢, cosH);, where 6,
¢ are the polar and azimuthal angles of one (e.g. plus-charge)
lepton in the rest frame of Q. The meaning of a “Lorentz-
invariant cos 6” is a scalar Z,, (k — k’)* which becomes Z -
(k K ) in the rest frame of Q.

2.2 The angular distribution, in terms of the probe and
target density matrices

The standard amplitude for inclusive production of a
fermion—antifermion pair of spin s, s’ has a string of gamma-
matrices contracted with final-state spinors v, (k's”), ity (k, s).
When the amplitude is squared, these factors appear bi-
linearly, as in

(k)i (ks) = (1/2) [ +m)(1+ y58)]. -

Summing over unobserved s and dropping md,,/, a form of
density matrix appears:

Z q(ks)itg (ks) — kuyht,.

N

3 We use €123 = 1. The mirror symmetry of pp collisions also strongly

supports a convention where the direction of the Z axis is determined
by the sign of the pair rapidity. The formulas shown do not include this
detail.

4 These expressions simplify a more complicated convention that
included finite mass effects in the original definition.
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The Feynman rules for the density matrix of two relativistic
final-state fermions (or antifermions, or any combination) is
a factor given by

paa’,bb’(kv k/) — kaa’kzb/ (4)

This fundamental equality is not present in pure state quan-
tum systems. There is no spinor corresponding to a fermion
averaged over initial spins, nor to a fermion summed over
final spins.

As shown in the appendix, the rest of the cross section
appears in the target density matrix o (X), which must have
four indices to contract with the probe indices:

do ~ " paa,owr (k. k') paar, ppr (X)dLIPS
aa’bb’
= tr (p(k, K)p(X)) dLIPS, (5)

where dLIPS is the Lorentz-invariant phase space.

Note that u, (ks)u, (ks) is not positive definite since the
Dirac adjoint u,/ (ks) = (uT(ks)yo)a has a factor of yy,
introduced by convention. Removing it, ZS Uy (ks)ul, (ks)
becomes positive by inspection. (Any matrix of the form
M - M has positive eigenvalues.) p(k, k') as written is not
normalized, because the Feynman rules shuffle spinor nor-
malizations into overall factors. To make the arrow in Eq.
(4) into an equality, multiply on the right by yy twice, and
standardize the normalizations. The same steps applied to
Paa’, by (X) cancels the yq factors. The result is that the prob-
ability to find two fermions has the fundamental quantum
mechanical form® P(k, k') = tr(p(k, k') p(X)).

The left side of Eq. (5) is do (k, k'), the same as the joint
probability P(Q, £| init) where init are the initial-state vari-
ables. The phase space for two leptons converts as

, do do
koko S = dFode

We can write
P(Q, €| init) = P(£]Q, init) P(Qlinit).

Here P(Qlinit) = do/d*Q, and P(¢|Q, init) = dN/dQ
is the conditional probability to find ¢ given Q and the ini-
tial state. This factorization is general and unrelated to one-
boson exchange, parton model, or other considerations. Since
P (£| 0, init) is a probability, quantum mechanics predicts it
is a trace:

5 We remind the reader that the phase space factors dLIPS originate in
further organizational steps computing the quantum mechanical transi-
tion probability per volume per time, which afterwards restore the phase
space factors.

dN 1 do Pl .. 3 Do(X 6
0 -sda - (t|Q. lnlt)—Etr(p( )p (X)), (6)
where tr indicates the trace, d2 = dcos6 - d¢, and p(£),
the probe, is a 3 x 3 matrix to be defined momentarily which
depends only on the directions £;.The target hadronic system
is represented by p (X). Since the probe p (€) is a 3 x 3 matrix,
then p(X) is a 3 x 3 matrix of numbers.®

The description has just been reduced from p,, pp (k, k'),
aDirac tensor with 4* possible matrix elements, toa 3 x 3 Her-
mitian matrix with 8 independent elements, since tr(p (£)) =
1 is one condition. Equation 6 is the most general angular
distribution that can be observed. It is valid for like sign and
unlike sign pairs, and assumes no model for how the pairs
are produced. The Dirac form (and Dirac traces) is over-
complicated, because describing every possible exclusive
reaction for every possible in and out state is over-achieved
in the formalism.

2.3 The probe matrix

The probe matrix p(£) is given by
1+a A A n
pijl) = T&j —alilj — 1beijily, )

which is derived in the appendix. The Standard Model pre-
dicts only two parameters, a and b. If on-shell lepton helicity
is conserved (as in lowest-order production by a minimally
coupled vector boson) then a = 1/2 and b = cscy. The
latter is not a prediction but a definition. If the production is
parity-symmetric then c4 = 0. The only non-trivial predic-
tion of the Standard Model is the value of ¢ 4 cy . Lowest-order
production by Z bosons predicts b = sin> Oy ~ 0.22.

More generally, the probe matrix itself represents a
reduced system that is unknown a priori. It should be deter-
mined experimentally. Consider the angular distribution of
ete™ — putu~.Let p(e; Z) describe electrons with param-
eters a., b, colliding along the z axis. Let p(u; f) describe
muons with parameters a,,, b, emerging along direction ‘.
A short calculation using Eq. (7) twice gives’

itr (p(e; 2Dp(; 2))

4
3 1 P A A2
:E §+2bebué~z+aeau((z-ﬁ) —-1/3)),
3

1
=0 <§ + 2b,by, c0s 0 + aeay (cos* 6 — 1/3)) . ®

6 This is a more general statement than enumerating “structure func-
tions”.

7 This may be a new result, which goes beyond what is known from one-
boson exchange with or without radiative corrections. The production
details can only renormalize the parameters.

@ Springer
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Fitting experimental data will give a.a,, and b.b,,. If lepton
universality is assumed the probe p (u; 2) has measured the
probe p(e; 2).

2.4 How tomography works: d/N /d€2 as a function of p (),
p(X)

Let Gy be a set of probe operators, with expectation val-
ues (Gy¢) = tr(Gyp(X)). The trace defines the Hilbert—
Schmidt inner product of operators. The condition for oper-
ators (matrices) to be orthonormal is

tr(G¢Gy) = g orthonormal matrices. )

There are N2—1 orthonormal N x N Hermitian operators, not
including the identity. When a complete set of probe opera-
tors has been measured, the density matrix is tomographically
reconstructed from observables as

p(X) =) Gur(Gep) = ) Ge(Ge).
4 12

For a pure state density matrix, there exists a basis {G}
such that only one term appears in the sum over £. Then
Ppure = |¥)(¥[, and |) is reconstructed as the eigenvector
of Ppure -

Each orthogonal probe operator measures the correspond-
ing component of the unknown system, and is classified by
its transformation properties. For angular distributions the
transformations of interest are rotations. o (£) contains ten-
sors transforming like spin-0, spin-1 and spin-2. Each tensor
of a given type is orthogonal to the others.

Organizing transformation properties simplifies things
significantly. Recall the general form of p(¢), from Eq. (7).
The most general form for p (X) that is observable will have
the same general expansion, with new parameters:

1 A o A
Probe:  p;;(£) = §8ij +be-Jij +aU;j(0);
N S A A
where Uj;(¢) = % —4it; =Uj(0); tr(U) =0;
(10)
1 1- -
System: p;;j(X) = 53,']' + ES Jij + Ui (X);

where U(X) =UT(X); tr(U(X))=0. an

These formulas reiterate Eq. (7) while identifying (Ji);; =
—1¢; i as the generator of the rotation group in the 3 x 3 repre-

sentation.® Upon taking the trace as an inner product, orthog-
onality selects each term in p (X) that matches its counterpart

8 The real Cartesian basis for J is being used because it is more trans-
parent than the J, — m basis that is an alternative. It would have
complex parameters.

@ Springer

in p(£). For example T is orthogonal to all the other terms
except the same component of J:

-

1 1 ~ - - - A~
Etr(JiJj) = §;j; hence Etr(Z JS-J)y=¢-8.

Orthogonality makes it trivial to predict which density matrix
terms can be measured by probe matrix terms. We call the
matching of terms “the mirror trick™.

We now make several relevant comments about Egs. (10)
and (11):

e All density matrices can be written as 1 y x5 /N to take care
of the normalization, plus a traceless Hermitian part. The
unit matrix is the spin-0 part and invariant under rotations.
The only contribution of the 1 terms is tr(1 x 1)/N? =
1/N.

e The textbook density matrix spin vector S consists of those
parameters coupled to the angular momentum operator.
This is also called the spin-1 contribution. The quantum
mechanical average angular momentum of the system is

(f) — tr(pxJ) = S.

‘When the coordinates are rotated, the J matrices transform
exactly so that S rotates like a vector under proper rotations,
and a pseudovector under a change of parity.

e The last term of Eq. (10), the spin-2 part, is real, symmetric
and traceless. By the mirror trick it can only communicate
with a corresponding spin-2 term in p (X) denoted U;; (X),
which is real, symmetric and traceless. It can be considered
a measure of angular momentum fluctuations:

1 1
3 (Jidj+JjJi) — 3778 ) = Ui (X).

A common mistake assumes the quadrupole U should be
zero in a pure “spin state”. Actually a pure state with |S| =
1 has a density matrix

- 1 PN 1 N
Ppure, ij (S) = 5(51‘/' = 8iS;) — Eeiijk- (12)

For example, when S = 2 the density matrix has one
circular polarization eigenstate with eigenvalue unity, and
two zero eigenvalues. Pure states exist with S =0: They
have real eigenvectors corresponding to linear polariza-
tion. From the spectral resolution p(X) = Y, Aaleq){eql,
there is no observable distinction between a density matrix
and the occurrence of pure states |e, ) with probabilities Ay,
which are the density matrix eigenvalues.

e As it stands the U;; matrices in Egs. (10) and (11)
have not been expanded in a complete set of symmetric,
orthonormal 3 x 3 matrices. Regardless p(X) can be fit
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to data whether or not an expansion is done. The pur-
pose of such work is to complete the classification pro-
cess to assist with interpreting data. We sketch the steps
here. Details are provided in an appendix. Let Ey be a
basis of traceless orthonormal matrices where U (£) =
>y r(U @) Ey) E . This is the tomographic expansion
of the probe. Choose Ej; so the outputs are normal-
ized real-valued spin-2 spherical harmonics Y/ (0, ¢).
The expansion of the unknown system will be U(X) =
Yoy t(e(XVEm)Ey = )y pm(X)Ey. By orthogo-
nality the spin-2 contribution to the angular distribution
will be

dN~t J4 X ; ~ X) Yy (6
1q = Te©P0)gpin-2 %ij( VW6, ).

Writing out the terms gives

dv 1 3 .
d_Q :E —+ ESX sm9 COS¢
3 3
+ ESy sinf sin¢ + ESZ cosf

1
+ ¢po (ﬁ — /3 cos? 9) — ¢p sin(20) cos ¢

+ ¢p sin® 6 cos(2¢)

+ cp3sin” 6 sin(2p) — cps sin(20) sing.  (13)

The label X has been dropped in py and ¢ = 3/(8+/27).
Since E}j; transform like Yj;, the coefficients pys trans-
form under rotations like spin-2. That means py —

0.5574
0.01399 + 0.07144i

0.01399 — 0.07144i

pic(X) = 0.4422

—0.004026 — 0.013487; 0.003138 + 0.002670i

not the same concept as yielding a positive cross section,
and generally is a more restrictive set of relations.” If density
matrices are not used it is quite straightforward to fit data
yielding a positive cross section while violating positivity.

Fortunately positivity can be implemented by the Cholesky
decomposition of px [38], whichis discussed in the appendix.
For the 3 x 3 case it is

p(X)(m) = M(m) - M (m);

1 mi mq + ims me + imy
Mm)=——1 O my mg +img |,

V 2k m¢ \ 0 0 m3

where the parameters —1 < my < 1.

Event-by-event p(€) is an array of numbers, and p (X)(m)
is an array of parameters. The results are combined to make
the Jth instance of tr(p;(£)p(X)(m)), where p(X)(m) has
been parameterized in Eq. (14). Fit the m, parameters to
the data set. For example, the log likelihood £ of the set
J =1 Jnaxis

(14)

]lTIEIX

Lm = 1og (ir (00 - oY)
J

+ Jmaxlog(3/47). (15)
Sample code available online!” carries out these steps, return-
ing the parameters m,. The details of cuts and acceptance
appear in fitting the numbers m, using numbers for the lep-
ton matrix p(lep) (not angles, nor trigonometric functions.)
In one example with simulated Z-boson data we found

—0.004026 + 0.013487i

0.003138 — 0.002670i
0.0004268

R,(;)M ,om:(X), where Rl(vzl)M’ is a matrix available from text-
books [37]. The traditional Aj, Ar conventions do not use
orthogonal functions. Transformations from the traditional
conventions to the p)s convention are given in an appendix.

Note the transformation properties listed are exact. The
systematic and statistical errors of a measurement appear in
fitting p(X).

2.5 Fitting p(X), dN/d<Q

Quantum mechanics requires p(X) must be positive, which
means it has positive eigenvalues. Positivity produces subtle
nonlinear constraints, similar to unitarity. In the 3 x 3 case
the relations are generally cubic polynomials. Positivity is

9 When tr(p(X)) = 1 is maintained, positivity is violated when one or
more eigenvalues of p(X) exceeds unity, and one or more goes nega-
tive. Then for some vector |e) the quadratic form (e|px|e) < 0, which
would appear to provide a signal. Yet no such signal might be found in
the angular distribution, because tr(p (£)p (X)) > 0 is a much weaker
condition. Thus, positivity cannot generally be reduced to bounds on
angular distribution coefficients, unless the bounds are so intricately
constructed to be equivalent to positivity of the density matrix eigen-
values.

10 To help readers appreciate the practical value of these advantages, we
constructed standalone analysis code in both ROOT and Mathematica
[39]. We expect the code to provide useful cross-checks on code users
might write for themselves.

@ Springer
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Using the Standard Model parameters for p(£), Egs. (3) and
(7), the trace yields

dN
Joo ™ WP©p(X)) = 0.5000 +0.0007739sin(9) sin(6)
fit

+0.3090 cos(¢) cos>(0)+0.1904 sin>(¢) cos>(0) + - - -

where - - - indicates several terms there is no need to write
out. Integrated over ¢, this expression becomes

dNﬁt _ 3

= 2 (1574 0.137cos6 + 1.56 29).
dcosf 471( + cosf+ €08

A 1+ cos? 6 distribution is the leading-order Drell-Yan pre-
diction for virtual spin-1 boson annihilation, while 0.137
cos 0 represents a charge asymmetry.

It is trivial to go from tr(p(£)p (X)) to a conventional
parameterization of an angular distribution by taking inner
products of orthogonal functions. It is also easy to expand
p(X) inabasis of orthonormal matrices with the same results.
Note these steps are exact, and very different from fitting data
to trigonometric functions in some convention, which tends
to yield multiple solutions, along with violations of positivity,
which can introduce pathological convention dependence.
Perhaps struggles with convention dependence of quarko-
nium data [40,41] are related to this. It would be interesting
to investigate.

2.6 Summary of quantum tomography procedure

To analyze data for each event labeled J:

® Compute Qy =ky+K); ty=k; =Ky (X4, ¥}, z!;
Uxyzg=Xy-Ly, Yy Ly, Zj-Ly);

Ly =Lxyz g/\xyz, J txyz, J-

e Make the lepton density matrix. For Z bosons in the Stan-
dard Model it is

1 A A A
,Oij(ﬁ) = 5(51‘]' — Eiﬁj) — 0.22l61‘jk€k. (16)

e For Beyond Standard Model (BSM) phenomenology, one
can readily assign values for @ and b according to model
specifics.!! See footnote 11 for details. The results are

1" » () for Z bosons in the Standard Model can be constructed from the
Z — £T¢~ matrix element: i M ~ v(k)y, (1—ys)u(k)e, . Stripping off
the polarization vector, taking the modulus squared of the resulting M,
and summing over spins gives pH’ = Zspin My, 2 ~ tr(kykwy),
whichreduces to p (¢) after transforming to sum and difference variables
g and ¢ and moving to the rest frame of the Z. A similar procedure can
be used to obtain p(£), as well as more general density matrices, for an
arbitrary BSM process.

@ Springer
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combined to make the Jthinstance of tr (o (£) p (X)(m)),
where p(X)(m) has been parameterized in Eq. (14). Fit
the m, parameters to the data set. For example, the log
likelihood £ of the set J = 1 -+ Jypax 18

jmax

com =Y 10g (ir (00) - 0O )
J
+ Jmaxlog(3/4m). (17)

Sample code available online (see footnote 10) carries
out these steps, returning the parameters m.

Comments

. The possible symmetries of p(¢) enter here. Suppose

c4 = 0. Then p(£) is even under parity, real and symmet-
ric. The imaginary antisymmetric elements of p(X) are
orthogonal, and contribute nothing to the angular distri-
bution. When known in advance, the redundant parame-
ters of p(X) can be set to zero while making the fit. (That
does not mean unmeasured parameters can be forgotten
when dealing with positivity.) In general a fitting routine
will either report a degeneracy for redundant parame-
ters, or converge to values generated by round-off errors.
Degeneracy will always be detected in the Hessian matrix
computed to evaluate uncertainties.

The normalization condition ) m2(k) = 1 canbe post-
poned by removing 1/ \/nT%[ from Eq. (14), and subtract-
ing Jmaxlog(Z,{““‘X mz(k)) from the log likelihood (Eq.
(15)). When that is done the fitted density matrix will
not be automatically normalized, due to the symmetry
p(X) — Ap(X) of the modified likelihood. The den-
sity matrix becomes normalized by dividing by its trace.
Incorporating such tricks improved the speed of the code
available online (see footnote 10) by a factor of about
100.

. Algorithms are said to compute a “unique” Cholesky

decomposition, which would seem to predict m, given
p(X). The algorithms choose certain signs of m, by a
convention making the diagonals of M positive. How-
ever, that is not quite enough to ensure a numerical fit
finds a unique solution.

The fundamental issue is that M M = p(X) is solved by
M = /p(X), and the square root is not unique. There are
2N arbitrary sign choices possible among N eigenvalues
of /p(X). Forcing the diagonals of M to be positive
reduces the possibilities greatly, and an algorithm exists
to force a unique, canonical form of m,, in a data fitting
routine. We did not make use of such a routine, since
fitting p(X) is the objective. Depending upon the data
fitting method, increasing the number of ways for M (m)
to make a fit sometimes makes convergence faster.
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Table 1 Terms in the angular distribution with their properties under
dAiscEete transformations Cy¢, P, and T . Here ¢ stands for £, X ¢ stands for

T-odd scattering observables from the imaginary parts of amplitudes
generally exist without violating fundamental 7 symmetry. See the text

X - £ =—X,£", and so on with scalar normalization factors removed. for more explanation
Term Origin dN/d Cy P T CiP PT
¢ - - - + +
b'¢ - - + +
Y + + + +
z - - + +
Sy Xt sin 6 cos ¢ - + + - +
Sy Ye sin 6 sin ¢ — — — + +
S VA4 cos @ — + + — +
) XXt sin” 6 cos 2¢ + + + + +
03 XYee sin? @ sin 2¢ + — — + +
p1 Xzee sin 260 cos ¢ + + + + +
04 YZzZie sin 26 sin ¢ + — — + +
0 zZzee 1/+/3 — /3 cos? 0 + + + + +

4. Let ()exp stand for the expectation value of a quantity
in the experimental distribution of events. By symme-

try <Z> and <fi ? j> are vector and tensor estimators,
exp exp
respectively, which must depend on the vector and tensor

parameters S , Uij(X) in the underlying density matrix.
A calculation finds

—_—
o~y
—_
Q)
>
]
I
—_
~>
~
I
|
|
i

1
- gRe[Uijl

/\
&
S
~.
[
)
>
S
Il

An estimate of p(X) not needing a parameter search then
exists directly from data. However, positivity of p (X) is more
demanding, and it is not automatically maintained by such
estimates.

3 Results

3.1 Analysis bonuses of the quantum tomography
procedure

3.1.1 Convex optimization

The issue of multiple solutions for p(X) is different. Mul-
tiple minima of x? statistics affects fits to cross sections
parameterized by trigonometric functions. However, quan-
tum tomography using maximum likelihood happens to be
a problem of convex optimization. In brief, when p is pos-
itive then (e|ple) is a positive convex function of |e). Then
tr(p(£)p(X)) is convex, being equivalent to a positively
weighted sum of such terms. The logarithm is a concave func-

tion, leading to a convex optimization problem. That means
that when p(X) is a local maximum of likelihood it is the
global maximum. Exceptions can only come from degenera-
cies due to symmetry or an inadequate number of data points
[42]. Convex optimization is important because without such
a property the evaluation of high-dimensional fits by trial and
error can be exponentially difficult.

3.1.2 Discrete transformation properties

Table 1 lists discrete transformation properties of all terms
under parity P, time reversal 7', and lepton charge conjuga-
tion Cy. If leptons have different flavors (as in like or unlike
sign ep) the Cy operation swaps the particle defining ‘.

When coordinates XY Z are defined the direction of ¥ =
Z x X is even under time reversal and parity, which is exactly
the opposite of X and Z. Then S -V is T-odd, contributing
the sin 6 sin ¢ term.!? The XY and ZY matrix elements of
p(X) are also odd under 7', contributing the terms shown. 7'-
odd terms come from imaginary parts of amplitudes, which
are generated by loop corrections in perturbative QCD. An
excellent example of T-odd effects in QCD is given in Ref.
[44] by Hagiwara et al.

Notice that every term in the lepton density matrix (Eq.
(7)) is automatically symmetric under C, P. This is a kine-
matic fact of the lepton-pair probe which does not originate
in the Standard Model. As a result the Cy P transformations
of the angular distribution depend on the coupling to the
unknown system. If overall C P symmetry exists the target
density matrix will have C P odd terms where C; P odd terms
are found. In the Standard Model these cos 6 and sin 6 cos ¢

12 In a forthcoming study [43] of inclusive lepton-pair production near
the Z pole, we find interesting, new features in the S, data of Ref. [11].
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terms correspond to charge asymmetries of leptons corre-
lated with charge asymmetries of the system, namely the
beam quark and antiquark distributions.

While weak CP violation is a mainstream topic, P and
C P symmetry of the strong interactions at high energies has
not been tested [45]. The gauge sector of QCD is kinemat-
ically CP symmetric, because the non-Abelian tr(E . f?)
term is a pure divergence.'3 Higher-order terms in a gauge-
covariant derivative expansion are expected to exist, and can
violate C P symmetry [45].

However, measuring violation of CP or fundamental
T symmetry in scattering experiments is invariably frus-
trated by the experimental impossibility of preparing time-
reversed counterparts. Some ingenuity is needed to devise
a signal. It appears that any signal will involve four inde-
pendent 4-momenta p; and a quantity of the form Q4 =
€apio P p’; p%‘ p4 - For example a term going like £ - ¥ ~
€aprola Qp ParPps might possibly originate in fundamen-
tal T symmetry violation and might be mistaken for per-
turbative loop effects. A more creative road to finding C P
violation involves two pairs with sum and difference vec-
tors Q, £; Q', ¢, and the scalar €30 o Qp Q' £, Which is
even under C and odd under P. The pairs need not be lep-
tons (although “double Drell Yan” has long been discussed)
but might be (say) w7 7 ~. It would be interesting to
explore further what a tomographic approach to such observ-
ables might uncover.

3.1.3 Density matrix invariants

We mentioned that scattering planes, trig functions, boosts
and rotations could be avoided, and the examples show how.
Once a frame convention is defined the lepton “coordinates”
(Xy-Ly, Yy-Ly, Zj-Ly) are actually Lorentz scalars. How-
ever, they depend on the convention for XY Z, which is arbi-
trary. At least four different conventions compete for atten-
tion. Moreover, once a frame is chosen, at least two naming
schemes (the “A;” and “A;” schemes) exist to describe the
angular distribution in terms of trigonometric polynomials..

Well-constructed invariants can reduce the confusion
associated with convention-dependent quantities [43,46—
48]. Since S transforms like a vector its magnitude-squared
§2is rotationally invariant. The spin-1 part of p(X) does not
mix with the real symmetric part under rotations. Since it is
traceless, the real symmetric (spin-2) part has two indepen-
dent eigenvalues, which are rotationally invariant.'* Finally
the dot-products of three eigenvectors ¢, of the spin-2 part

13 Non-perturbative strong C P violation in QCD by a surface term
has been proposed. Tests have been dominated by the neutron dipole
moment, while calculations of non-perturbative effects are problematic.

14 Work by Faccioli et al. [49,50] attempted to construct invariants by
inspecting the transformation properties of ratios of sums of angular
distribution coefficients upon making rotation about the conventional

@ Springer

with S are rotationally invariant. Then (é; - 3‘)2 are three
invariants not depending on the sign of eigenvectors. That
suggests six possible invariants, but ) _; (¢; -8)? = $2 makes
the S invariants dependent, leaving five independent rota-
tional invariants. That is consistent with counting eight real
parameters in a 3 x 3 Hermitian matrix, subject to three free
parameters of the rotation group, leaving 8 — 3 = 5 rota-
tional invariants. The same counting for unitary transforma-
tions would leave only the two independent eigenvalues of
the matrix.

Any function of invariants is invariant. The combinations
below have useful physical interpretations:

e The degree of polarization d is a standard measure of the
deviation from the unpolarized case. It comes from the
sum of the squares of the eigenvalues of p minus 1/3,
normalized to the maximum possible:

d=,/Bt(py) — /2,

where 0<d < 1.

When d = 0 the system is unpolarized, and whend = 1
the system is a pure state.

e The entanglement entropy S is the quantum mechanical
measure of order. The formula is

S = —tr(px log(px)).

In terms of eigenvalues py, S = — Za Palog(py).
When p — 1yxn/N the system is unpolarized, and
S = log(N). That is the maximum possible entropy, and
minimum possible information. When & = 0 the entropy
is the minimum possible, providing the maximum possi-
ble information, and the system is a pure state.

It is instructive to interpret ¢S as the “effective dimen-
sion” of the system. For example the eigenvalues (1/2 +
b, 1/2 — b, 0) occur in the density matrix of on-
shell fermion annihilation with helicity conservation.
One zero-eigenvalue describes an elliptical disk-shaped
object. The entropy ranges from S = 0, (e® =1 for
b = 1/2, a one-dimensional stick shape) to S = log(2),
(e° =2fora disk-shaped object with maximum symme-
try.) As expected, an unpolarized three-dimensional sys-
tem has three equal eigenvalues, is shaped like a sphere,
and ¢S — 3.

Footnote 14 continued

Y axis. The method cannot identify a true invariant unless Y happens
to be an eigenvector of the matrix. By the same method the group also
identified S? as a “parity violating invariant”, while 52 is actually even
under parity. Parity violation is not required to measure S with polarized
beams.
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Figure 1 shows the entropy of the lepton density matrix
o) (Eq. (7)) in the plane of parameters (a, b). The
matrix eigenvalues are! (1/3 — 2a/3, 1/3 + a/3 —
b, 1/3+4a/3+b). The triangular boundaries are the pos-
itivity bounds on these parameters, outside of which the
entropy has an imaginary part. The corners of the triangle
are pure states. The left corner represents a purely longitu-
dinal polarization, p; = |L)(L| where |[L >= (0, 0, 1)
in a coordinate system where ¢ = . The two right cor-
ners are purely circular polarizations, p+ = |€4)(€+],
where in the same coordinates e+ = (1, %1, 0)/«/5.
The interior lines a = =£b, b = 0 represent maximal
symmetry matrices having two equal eigenvalues. The
figure also indicates the constraints of a positive distri-
bution for the example of Eq. (8) assuming lepton uni-
versality. The values of a and b are actually unrestricted
in all directions, so long as they lie within the bounding
curves.

The Standard Model leptons from lowest-order s-channel
Z production have a = 1/2, b = sin? 6w, which is
shown in Fig. 1 as a dot. The edge a = 1/2 corre-
sponds to on-shell helicity conservation, with eigenvalues
0, 1/2 — sin? Ow, 1/2 + sin? Ow. The a, b parameters
of leptons from a different production process, or subject
to radiative corrections, must still lie inside the triangle.
Maximal symmetry with eigenvalues (1/2, 1/2, 0) occurs
where the line of b = sin? Oy just touches the b = —a
line, which happens at sin”> @y = 1/4. That is not far
from the Standard Model value, which is very interesting.
Since no established theory predicts sin? Oy one cannot
rule out a deeper connection.

It is tempting but incorrect to assume the bounds dis-
cussed would apply to the same terms of a more general
density matrix. For example, add —c7;7; to the expres-
sion in Eq. (7), where 71 ¢ =0and update the normaliza-
tion condition. The resulting positivity region of a, b, ¢
is shown in Fig. 2, which also shows the plane ¢ = 0
equivalent to Fig. 1. At the extrema ¢ = %1 the region
of consistent (a, b) parameters shrinks to single points.
The matrix for p(X) computed earlier is an example
where all terms in any standard convention happen to
occur. By inspection this system (mostly quark—antiquark
annihilation) is superficially much like the lepton one.
The entropy of is 0.68 and ¢® = 1.96, and one eigenvalue
is close to zero. Of course there is much more information
in the other parameters, the orientation of eigenvectors,
and in S and its magnitude.

15 1t can be shown that the eigenvalues Ay = 1/3 + (2d/3) cos(6k),
where d is the degree of polarization and 6y = cos~!(der (3p(X) —
13x3)/d)/2 4+ 27k/3).

0.6 T T T T T ]
0.4
b L

0.2+

0.0

Fig. 1 Contours of constant entropy S of the lepton density matrix
p () (Eq. (7)) in the plane of parameters (a, b). Contours are separated
by 1/10 unit with & = 0 at the central intersection. The horizontal
dashed line shows the lowest-order Standard Model prediction b =
sin? Oy . Annihilation with on-shell helicity conservation is indicated
by the vertical dashed line a = 1/2. The left corner of the triangle is a
pure state with longitudinal polarization, while the two right corners are
pure states of circular polarization. The interior lines represent matrices
with maximal symmetry, where two eigenvalues are equal. They cross
at the unpolarized limit. The curved gray region represents the much
less restrictive constraints of a positive distribution using Eq. (8) and
lepton universality

o5 00

-1.0

Fig. 2 Boundary of the positivity region of a density matrix depending
on three parameters a, b, ¢ described in the text. The two-dimensional
region cut by the plane ¢ = 0 corresponds to Fig. 1
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4 Discussion

The quantum tomography procedure offers at least seven sig-
nificant advantages over standard methods of analyzing the
angular correlations of inclusive reactions:

Simplicity and Efficiency Tomography exploits a struc-
tured order of analysis. By construction, unobservable
elements never appear.

Covariance Physical quantities are expressed covariantly

every step of the way. That is not always the case with

quantities like angular distributions.

Complete polarization information The unknown density

matrix p (X) contains all possible information, ready for

classification under symmetry groups.

e Model-independence No theoretical planning, nor pro-
cessing, nor assumptions are made about the unknown
state. The process of defining general structure functions
has been completely bypassed. It is not even necessary to
assume anything about the spin of s- or #-channel inter-
mediates. The observable target structures is always a
mirror of the probe structure. The “mirror trick” is uni-
versal as described in Sect. 2.4.

e Manifest positivity A pattern of misconceptions in the lit-
erature misidentifies positivity as being equivalent to pos-
itive cross sections. It is not difficult to fit data to an angu-
lar distribution and violate positivity. In fact, an angular
distribution expressed in terms of expansion coefficients
actually lacks the quantum mechanical information to
enforce positivity.

e Convex optimization The positive character of the den-
sity matrix leads to convex optimization procedures to
fit experimental data. This provides a powerful analysis
tool that ensures convergence.

e Frame independence Once the unknown density matrix

has been reconstructed, rotationally invariant quantities

can be made by straightforward methods. This is illus-
trated in Sect. 3.1.3, which includes a discussion of the
entanglement entropy.

Quantum tomography has already yielded significant
results. Our tomographic analysis [43] of a recent ATLAS
study of Drell-Yan lepton pairs with invariant mass near
the Z pole [11] discovered surprising features in the den-
sity matrix eigenvalues and entanglement entropy. By way
of advertising, we have also gained insight into the myste-
rious Lam—Tung relation [51,52], including why it holds at
NLO but fails at NNLO. These topics will be presented in
separate papers.
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Appendix A: Cross section in terms of density matrices

The density matrix approach stands on its own as an efficient
tool kof quantum mechanics. However, we see the need to
relate it to more traditional scattering formalism.

Consider the cross section for the inclusive production of
two final-state particles of spin s, s’ from particle intermedi-
ates:

2
do ~ Z Z M(xs — fs9)| -dups,

s, 1 J

where Y, M(xs = f) = X, (fITxnN8* C py -
> pi), T is a transfer matrix, and dT17;ps is the Lorentz-
invariant phase space.

Then
do ~ > 1Y (fsITIxs)
s,s’ J

AD kT I fow) | | - dTTips.
K

=tr | | D T fos) T

s,s’

A Dk ] | - d s, (18)
J,K

where ) 7.k 1X7) (XK | accounts for any interference between
intermediate states. We identify the quantity in the first set
of parentheses on the last line of Eq. (18) with the probe
density matrix pprobe and the quantity in the second set of
parentheses with the density matrix for the unknown particle
intermediates, py. The T, T in Pprobe ensure the overlap of
px with pprobe, inside the trace, is taken at ‘equal times’.
Rewriting do in terms of the density matrices, we find

do ~ tr(pprobe - px) - dT1L1pS,

where dITpps ~ dQ - d4q and ¢ is the sum of the final-
state pair momentum. Then, for given pair momentum g, the
angular distribution is,


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Eur. Phys. J. C (2018) 78:5

Page 11 0of 13 5§

do
E(Ga olg) ~ tr(,Oprobe “PX)s

where the proportionality suppresses an overall normaliza-
tion. The conditional probability given ¢ captures the event-
by-event character of angular correlations. The explicit ¢
dependence might suggest we assumed an s-channel boson
intermediate state, but we have not.

If we know do/d2 and pprobe for a given event, we can
reconstruct px for that event. This is the essence of the quan-
tum tomography procedure. The probe is what is known, and
it determines what can be discovered.

Appendix B: Probe matrix

Figure 3 shows the diagram for the simplest lepton-pair
probe. It is completely non-specific about the process cre-
ating a lepton with momentum kj and Dirac density matrix
polarization «a’, and an antilepton with momentum k; and
polarization B8.” From the Feynman rules

pUep)? ~ (k) K2) g (19)

The symbol ~ indicates the high energy limit and ignoring a
trivial overall normalization.

Continuing, p(X) is something of vast complexity, which
can only couple to p(lep) via the indices shown. The Dirac
structure of p (X) can be expanded over several complete sets.
However, the relevant (observable) part of p (X) 55; will be its
projection onto the subspace coupled to this particular probe,
just as the general analysis prescribed. It is ideal to classify
only what will be observed. That sector is predetermined by
the very limited Dirac structure of the probe. Thus

do ~ kfkﬁpw(X),
where 0,0 (X) = tr (7. ® 1) p(X)).

Pa PA
k
a/’\a'
[3\_/ B'
k2
Ps P

Fig. 3 The lepton-pair density matrix ,ogg, (lep), in black, coupled to
the colliding system density matrix p(X). The matrix labels on legs are
diagonal in momenta k1, k;. Off-diagonal polarization (Dirac) indices
are explicitly shown. The Feynman rules are the same as for ordinary
diagrams

With this probe massless fermion pairs produce no combina-
tions of kﬁ‘ ky or kg k3 or anything else. The operations show
how the tr symbol comes to be used repeatedly with different
meanings implied by the context.

We now use Hermiticity, which makes two predictions:
p(lep) = p""(lep)yuyus  p""(lep) = p"(lep)”,
plus the same relation for p(X). All ki‘k; factors must be

strictly bilinear, and occur in a real symmetric plus z X anti-
symmetric combinations. The most general possibility is

P! (lep) = aky - kan™" + B(k{'ky + k{k5)
1y (kkS — kVkY) + 18" P higkag,  (20)

where 1,,, is the Minkowski metric. By algebra

a B B
v — 2,2 0y Eghgy — Zprpy
™" (lep) 24 + 24" 5
)
_ l%(q“ﬂ” — g =15 gty Q1)

Event-by-event there exists a preferred, oriented pair rest
frame where ¢ = (g, 6) and ¢* = (0, qé). In that frame
Eq. (21) predicts a normalized 3 x 3 tensor of spatial com-
ponents which is

. 1 . . .
p/*(lep) = gsf’f +aJgifer —puik (22)
A A SJk
Uity =ik — = (23)

Here a and b arereal, and J), are the spin-1 rotation generators
in Cartesian coordinates:

Jk _ )
Jp = —lémk.

Equation 22 has been decomposed into tensors transforming
under rotations like spin-0, spin-1 and spin-2. The expansion
above is kinematic and not a consequence of any special
theory.

The approach has the virtue of maintaining strict control
of how outputs depend on assumptions. We have made few
assumptions, yet we have a result, which is that p/*(lep)
only depends on two scalars a, b. The only scalar available
from p(lep; ¢, q) is qz, hence a = a(qz), b = b(qz). The
enormous body of field theory and the Standard Model only
predicts only two parameters of Eq. (22). If and when the
lepton pair originates from an intermediate boson with vertex
cvy® + cayuys, then

a=cacy; b=1/2.
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The general possibility these parameters might be functions
of g2, namely vertex form factors, has emerged on its own.
Notice that in the rest frame oriented naturally along the lep-
ton momentum p (lep) is not diagonal. The diagonal elements
are interpretable as probabilities, even classical probabilities.
The off-diagonal elements convey the information as regards
entanglement.

Appendix C: Positivity

There is a positivity issue in fitting angular distribution data.
Representp = MM, andthenp > 0. Any M = HU, where
H = H"andUUT = 1. We can make M self-adjoint since U
cancels out. To parameterize N x N matrices M use SU (N)
representations G, normalized to G,G, = (1/2)8,p. For
N = 3 those are the Gell-Mann matrices. We define param-
eters with

M = mo13x3//3 + v2maGa. (24)

Compute

2
MM =m3/3+ 2\/;m0maGa + 2mampG,Gp.
The symmetric product is
G.Gp +GpGy = (Sab/?’ + fabgGg~

Check the trace of both sides for the normalization of 8,p.
Everything else must be traceless and must be spanned by
Gg. Then

1 2
MM = 3 (m(z) + Zmﬁ) +2\/;m0mgGg
a
+ fabgmamng-
9

u=0
< 1, while it is more restrictive.

The normalization 7r(p) = 1 needs )

2
m

mym, = 1.This
requires each 0 < m

Table 2 Three ways of parameterizing the monopole (left of double
vertical line) relative to quadrupole (right) part of the angular distribu-
tion. The bottom row (right) represents our spin-2 basis functions that
are both orthogonal and uniformly normalized, compared to ad hoc con-
ventions of the other rows. The spin-2 coefficient combinations listed
in each row are the ones that mix linearly under rotations of the frame
coordinates. To find the parameterization of a given row, multiply the

There is a degeneracy issue in the nonlinear relation of
my, to a straight expansion p = 1/3 + ¢, G,

2
Cg = 2\/;\/1 —m-mmg + fapgMamp. (25)

Notice
[p, M]=[M? M]=0.

Then M and p have the same eigenvectors. The eigenvalues
of p are those of M, squared. For N eigenvalues of p there
are 2N possible M’s. If p is positive definite, however, there
is only one M with strictly positive diagonal entries. In that
sense, the M satisfying p = MM can be said to be unique.

The positivity problem is often solved with the Cholesky
decomposition: p = LL', where L is a lower-triangular
matrix with real entries on the diagonal. L is related to M by
a similarity transform. There are N +2N(N — 1)/2 = N 2
free real parameters in a lower-triangular matrix with real
diagonals, which is just right for Hermiticity. As before, the
condition tr(p) = 1 requires ) m,m, = 1. The Cholesky
decomposition is unique, in the sense above, when p is pos-
itive definite.

Appendix D: Collected conventions

As a consequence of consistent definitions, our pys and Yy,
transform under rotations like real representations of spin-
2. Other conventions have long existed. Table 2 shows the
relations of the pjs parameters compared to the ad hoc con-
ventions known as Ay and Ax. The pys are self-explanatory
because they correspond to orthonormal harmonics and
transform like spin-2 representations. The arbitrary normal-
izations and conventions relating different basis functions
have been a barrier to interpretation, needlessly complicated
transformations between angular frame conventions.

Our self-explanatory conventions for the spin-1 param-
eters are given in Table 3. For example, it is quite easy to

coefficient in each column by the function at the bottom, and add. To
absolutely normalize the A ; form, multiply the entire sum by 3/(167),
and the normalized series will begin at 1/(4s). To absolutely normalize
the A; form multiply the entire sum by 3/(47). The py form is abso-
lutely normalized by definition. The constant ¢ = 3/(8x +/2) has been
divided out to match the other conventions. The absolutely normalized
form uses the sum of the pjys row multiplied by ¢

167'(/3 (\/§A0/2—1/\/§) Al A2/2 A5 Aé
47t/ (3+Ag) || —Ao/ (BVB+VBAg) | Aap/ (B+Ag) | Ag/(B+Ag) | Ay/(B+2e) | Agy/(3+ )

1/c £0 P1 02 03 P4
1/(4m) 1/v/3 — v/3cos?(8) |sin(20) cos(¢) | sin’(8) cos(2¢) | sin® () sin(2¢) | sin(20) sin(¢)
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Table 3 Parameterizing the spin-1 part of the angular distribution. To
form the angular distribution coefficients from each row are multiplied

by

functions on the bottom row and added to those from Table 2

Az Az Ay
244 245 24
Sx Sy SZ

sin(6) cos(¢)

sin(0) sin(¢) | cos(6)

remember that S, — sinf cos¢, Sy — sinfsing and S,
leads to cos € angular dependence.
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