131 research outputs found
Sum Rule Approach to the Isoscalar Giant Monopole Resonance in Drip Line Nuclei
Using the density-dependent Hartree-Fock approximation and Skyrme forces
together with the scaling method and constrained Hartree-Fock calculations, we
obtain the average energies of the isoscalar giant monopole resonance. The
calculations are done along several isotopic chains from the proton to the
neutron drip lines. It is found that while approaching the neutron drip line,
the scaled and the constrained energies decrease and the resonance width
increases. Similar but smaller effects arise near the proton drip line,
although only for the lighter isotopic chains. A qualitatively good agreement
is found between our sum rule description and the presently existing random
phase approximation results. The ability of the semiclassical approximations of
the Thomas-Fermi type, which properly describe the average energy of the
isoscalar giant monopole resonance for stable nuclei, to predict average
properties for nuclei near the drip lines is also analyzed. We show that when
hbar corrections are included, the semiclassical estimates reproduce, on
average, the quantal excitation energies of the giant monopole resonance for
nuclei with extreme isospin values.Comment: 31 pages, 12 figures, revtex4; some changes in text and figure
Temperature induced shell effects in deformed nuclei
The thermal evolution of the shell correction energy is investigated for
deformed nuclei using Strutinsky prescription in a self-consistent relativistic
mean-field framework. For temperature independent single-particle states
corresponding to either spherical or deformed nuclear shapes, the shell
correction energy steadily washes out with temperature. However,
for states pertaining to the self-consistent thermally evolving shapes of
deformed nuclei, the dual role played by the single-particle occupancies in
diluting the fluctuation effects from the single-particle spectra and in
driving the system towards a smaller deformation is crucial in determining
at moderate temperatures. In rare earth nuclei, it is found that
builds up strongly around the shape transition temperature; for
lighter deformed nuclei like and , this is relatively less
prominent.Comment: 6 pages revtex file + 4 ps files for figures, Phys. Rev. C (in press
Environmental and economic issues concerning the use of wet scrubbers coupled to bagasse‑fired boilers: a case study in the Brazilian sugarcane industry
For decades, wet scrubbers have been used to control particulate matter (PM) emitted by bagasse-fired boilers in the sugarcane industry. This choice was justified by their acceptable performance in meeting environmental standards, the abundance of water resources, and the fact that their operation was simpler and less expensive than other dry cleaning operations. However, the progressive tightening of PM emission limits, as well as the need for more rational water and wastewater management in these applications, has changed this aspect of the industry. Despite the extensive technical literature on wet scrubbers, the lack of up-to-date indicators of their performance in sugarcane industries has prevented the optimization of wet scrubbing processes. This paper clearly shows that the use of wet scrubbers can result in significant water and heat losses, as well as high operating costs for wastewater treatment stations (WTSs). Mass and energy balances were determined for a typical ethanol-sugar plant operating in Brazil, which is the world’s largest sugarcane producer. The key boiler and scrubber performance
indicators were evaluated experimentally over the course of a crop season and were compared to the legal particulate emission and water quality requirements in Brazil. The boiler processed an average of 114.8 t/h of bagasse containing 46.8% moisture and generated 4.75 t of gas and 28.2 kg of PM for each ton of dry burned bagasse. Of the total PM (ash and soot), 68% was collected as dry material in the grate, heat exchangers, and multicyclone; 25% was collected in the wet scrubber; and 7% was emitted to the atmosphere, in compliance with the Brazilian standards. The operation of the WTS linked to the gas cleaning system was inefficient, using 70% of the water to convey the dry PM retained in the boiler, heat exchangers, and multicyclone and only 30% to operate the wet scrubber. Evaporation caused the loss of 10.5% of the scrubbing water to the atmosphere. The transportation of moist cake (7.9 t/h, 78% wb) for disposal in fields resulted in significant fuel costs and water losses. The operation of the WTS accounted for 62% of the total capital expenditure of the cleaning system, while the wet scrubber accounted for only 38%. This work provides updated performance indicators and alternatives for optimizing a gas cleaning system to promote more rational water and wastewater management and savings for the sugarcane sector
Isospin-rich nuclei in neutron star matter
Stability of nuclei beyond the drip lines in the presence of an enveloping
gas of nucleons and electrons, as prevailing in the inner crust of a neutron
star, is studied in the temperature-dependent Thomas-Fermi framework. A
limiting asymmetry in the isospin space beyond which nuclei cannot exist
emerges from the calculations. The ambient conditions like temperature, baryon
density and neutrino concentration under which these exotic nuclear systems can
be formed are studied in some detail.Comment: Submitted to Phy. Rev. C: Revtex version of manuscript 22 pages and
10 PS-files for figure
Isospin-rich nuclei in neutron star matter
Stability of nuclei beyond the drip lines in the presence of an enveloping
gas of nucleons and electrons, as prevailing in the inner crust of a neutron
star, is studied in the temperature-dependent Thomas-Fermi framework. A
limiting asymmetry in the isospin space beyond which nuclei cannot exist
emerges from the calculations. The ambient conditions like temperature, baryon
density and neutrino concentration under which these exotic nuclear systems can
be formed are studied in some detail.Comment: Submitted to Phy. Rev. C: Revtex version of manuscript 22 pages and
10 PS-files for figure
Anatomy of nuclear shape transition in the relativistic mean field theory
A detailed microscopic study of the temperature dependence of the shapes of
some rare-earth nuclei is made in the relativistic mean field theory. Analyses
of the thermal evolution of the single-particle orbitals and their occupancies
leading to the collapse of the deformation are presented. The role of the
non-linear field on the shape transition in different nuclei is also
investigated; in its absence the shape transition is found to be sharper.Comment: REVTEX file (13pages), 12 figures, Phys. Rev. C(in press),
\documentstyle[aps,preprint]{revtex
On the efficiency of the Blandford-Znajek mechanism for low angular momentum relativistic accretion
Blandford-Znajek (BZ) mechanism has usually been studied in the literature
for accretion with considerably high angular momentum leading either to the
formation of a cold Keplerian disc, or a hot and geometrically thick
sub-Keplerian flow as described within the framework of ADAF/RIAF. However, in
nearby elliptical galaxies, as well as for our own Galactic centre, accretion
with very low angular momentum is prevalent. Such quasi-spherical strongly
sub-Keplerian accretion has complex dynamical features and can accommodate
stationary shocks. In this letter, we present our calculation for the maximum
efficiency obtainable through the BZ mechanism for complete general
relativistic weakly rotating axisymmetric flow in the Kerr metric. Both shocked
and shock free flow has been studied in detail for rotating and counter
rotating accretion. Such study has never been done in the literature before. We
find that the energy extraction efficiency is low, about 0.1%, and increases by
a factor 15 if the ram pressure is included. Such an efficiency is still much
higher than the radiative efficiency of such optically thin flows. For BZ
mechanism, shocked flow produces higher efficiency than the shock free
solutions and retrograde flow provides a slightly larger value of the
efficiency than that for the prograde flow.Comment: Substantially revised final version to appear in MNRAS Letters. Three
colour figure
Isotope thermometery in nuclear multifragmentation
A systematic study of the effect of fragmentfragment interaction, quantum
statistics, -feeding and collective flow is made in the extraction of
the nuclear temperature from the double ratio of the isotopic yields in the
statistical model of one-step (Prompt) multifragmentation. Temperature is also
extracted from the isotope yield ratios generated in the sequential
binary-decay model. Comparison of the thermodynamic temperature with the
extracted temperatures for different isotope ratios show some anomaly in both
models which is discussed in the context of experimentally measured caloric
curves.Comment: uuencoded gzipped file containing 20 pages of text in REVTEX format
and 12 figures (Postscript files). Physical Review C (in press
- …