11 research outputs found
TGR5 potentiates GLP-1 secretion in response to anionic exchange resins
Anionic exchange resins are bona fide cholesterol-lowering agents with glycemia lowering actions in diabetic patients. Potentiation of intestinal GLP-1 secretion has been proposed to contribute to the glycemia lowering effect of these non-systemic drugs. Here, we show that resin exposure enhances GLP-1 secretion and improves glycemic control in diet-induced animal models of "diabesity", effects which are critically dependent on TGR5, a G protein-coupled receptor that is activated by bile acids. We identified the colon as a major source of GLP-1 secretion after resin treatment. Furthermore, we demonstrate that the boost in GLP-1 release by resins is due to both enhanced TGR5-dependent production of the precursor transcript of GLP-1 as well as to the local enrichment of TGR5 agonists in the colon. Thus, TGR5 represents an essential component in the pathway mediating the enhanced GLP-1 release in response to anionic exchange resins
Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis
Sirt3 is a mitochondrial sirtuin, predominantly expressed in highly metabolic tissues. Germline ablation of Sirt3 has major metabolic consequences, including increased susceptibility to metabolic damage and oxidative stress after high fat feeding. In order to determine the contribution of liver and skeletal muscle to these phenotypes, we generated muscle-specific Sirt3 (Sirt3skm−/−) and liver-specific Sirt3 (Sirt3hep−/−) knock-out mice. Despite a marked global hyperacetylation of mitochondrial proteins, Sirt3skm−/− and Sirt3hep−/− mice did not manifest any overt metabolic phenotype under either chow or high fat diet conditions. Similarly, there was no evidence for increased oxidative stress in muscle or liver when Sirt3 was ablated in a tissue-specific manner. These observations suggest that the mitochondrial hyperacetylation induced by Sirt3-deletion in a tissue specific manner is not necessarily linked to mitochondrial dysfunction and does not recapitulate the metabolic abnormalities observed in the germline Sirt3 knock-out mice
LRH-1-dependent glucose sensing determines intermediary metabolism in liver
Liver receptor homolog 1 (LRH-1), an established regulator of cholesterol and bile acid homeostasis, has recently emerged as a potential drug target for liver disease. Although LRH-1 activation may protect the liver against diet-induced steatosis and insulin resistance, little is known about how LRH-1 controls hepatic glucose and fatty acid metabolism under physiological conditions. We therefore assessed the role of LRH-1 in hepatic intermediary metabolism. In mice with conditional deletion of Lrhl in liver, analysis of hepatic glucose fluxes revealed reduced glucokinase (GCK) and glycogen synthase fluxes as compared with those of wild-type littermates. These changes were attributed to direct transcriptional regulation of Gck by LRH-1. Impaired glucokinase-mediated glucose phosphorylation in LRH-1-deficient livers was also associated with reduced glycogen synthesis, glycolysis, and de novo lipogenesis in response to acute and prolonged glucose exposure. Accordingly, hepatic carbohydrate response element-binding protein activity was reduced in these animals. Cumulatively, these data identify LRH-1 as a key regulatory component of the hepatic glucose-sensing system required for proper integration of postprandial glucose and lipid metabolism
Crossroads between drug and energy metabolism : role of constitutive androstane receptor and AMP-activated kinase
Phenobarbital (PB) is a prototype inducer of genes encoding drug metabolizing enzymes
including the cytochromes P450 (CYPs). Additionally, phenobarbital was found to
repress genes that encode enzymes involved in gluconeogenesis such as
phosphoenolpyruvate carboxykinase (PEPCK). Constitutive androstane receptor (CAR)
is known to play a fundamental role in the phenobarbital-mediated regulation of
cytochromes P450 and in gluconegenesis in the liver. Phenobarbital was recently shown
in our laboratory to activate a known inhibitor of hepatic glucose production, the energy
sensor AMP-activated kinase (AMPK). In the present thesis, we investigated the role of
AMPK in the phenobarbital-mediated inhibition of gluconeogenesis. Our experiments
reveal that both CAR and AMPK are necessary to mediate the PB inhibitory effect on
PEPCK mRNA expression. Furthermore, our study indicates that AMPK and CAR
physically interact in this process. We speculate that once activated by PB, the CARAMPK
complex may prevent coactivators such as PGC-1α to interact with partners at the
PEPCK promoter. However, overexpression of exogenous CAR dose-dependently
increased PEPCK mRNA expression and its promoter activity in a human hepatoma cell
line. The co-transfection of CAR with PGC-1α, a master regulator of PEPCK, clearly
increases PEPCK promoter activity. Moreover, we show that the cotransfection of CAR
and protein kinase A (PKA), a well established inducer of gluconeogenic pathways, dose
dependently activates PEPCK.
Our results also indicate that similarily to PEPCK, CAR mRNA expression is induced
during fasting and in the absence of glucose. CAR also induces genes that encode for
glucose transport during fasting. On the other hand, insulin represses CAR mRNA
expression suggesting that CAR plays a significant role in the fasting-feeding transition.
Finally, we demonstrate that CAR regulates the expression of genes encoding for of
acetyl-CoA carboxylase (ACC), an enzyme known to be involved in the control of
lipogenesis and beta oxidation of fatty acids. Altogether, these studies indicate that CAR is involved in the regulation of glucose and lipid metabolism and the regulation of its
activity may be crucial to understand the molecular mechanisms that link drug
metabolism to energy metabolism
Use of waste products for detecting amyloidogenic proteinaceous material in living mammals
Method for detecting amyloidogenic proteinaceous material induced by a proteopathy, for instance Alzheimer's disease, characterized by the fact that said amyloidogenic proteinaceous material is detected in a mammal waste product, such as feces
Gastro-intestinal biomarkers for diagnosis and therapies of proteinopathies
Pharmaceutical composition for the treatment of proteinopathies comprising products which are able to stimulate growth or inhibition of at least one of Odoribacter, Oscillospira, Dehalobacterium, Alistipes, Parabacteroides, Lactobacillus and Sutterella, Firmicutes, Bacteroidetes, Allobaculum and Akkermansia bacteria population in the gut of individuals
Administrations of human adult ischemia-tolerant mesenchymal stem cells and factors reduce amyloid beta pathology in a mouse model of Alzheimer's disease
The impact of human adult ischemia-tolerant mesenchymal stem cells (hMSCs) and factors (stem cell factors) on cerebral amyloid beta (Aβ) pathology was investigated in a mouse model of Alzheimer's disease (AD). To this end, hMSCs were administered intravenously to APPPS1 transgenic mice that normally develop cerebral Aβ. Quantitative reverse transcriptase polymerase chain reaction biodistribution revealed that intravenously delivered hMSCs were readily detected in APPPS1 brains 1 hour following administration, and dropped to negligible levels after 1 week. Notably, intravenously injected hMSCs that migrated to the brain region were localized in the cerebrovasculature, but they also could be observed in the brain parenchyma particularly in the hippocampus, as revealed by immunohistochemistry. A single hMSC injection markedly reduced soluble cerebral Aβ levels in APPPS1 mice after 1 week, although increasing several Aβ-degrading enzymes and modulating a panel of cerebral cytokines, suggesting an amyloid-degrading and anti-inflammatory impact of hMSCs. Furthermore, 10 weeks of hMSC treatment significantly reduced cerebral Aβ plaques and neuroinflammation in APPPS1 mice, without increasing cerebral amyloid angiopathy or microhemorrhages. Notably, a repeated intranasal delivery of soluble factors secreted by hMSCs in culture, in the absence of intravenous hMSC injection, was also sufficient to diminish cerebral amyloidosis in the mice. In conclusion, this preclinical study strongly underlines that cerebral amyloidosis is amenable to therapeutic intervention based on peripheral applications of hMSC or hMSC factors, paving the way for a novel therapy for Aβ amyloidosis and associated pathologies observed in AD
Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly
The pathway leading from amyloid-β deposition to cognitive impairment is believed to be a cornerstone of the pathogenesis of Alzheimer's disease (AD). However, what drives amyloid buildup in sporadic nongenetic cases of AD is still unknown. AD brains feature an inflammatory reaction around amyloid plaques, and a specific subset of the gut microbiota (GMB) may promote brain inflammation. We investigated the possible role of the GMB in AD pathogenesis by studying the association of brain amyloidosis with (1) GMB taxa with pro- and anti-inflammatory activity; and (2) peripheral inflammation in cognitively impaired patients. We measured the stool abundance of selected bacterial GMB taxa (Escherichia/Shigella, Pseudomonas aeruginosa, Eubacterium rectale, Eubacterium hallii, Faecalibacterium prausnitzii, and Bacteroides fragilis) and the blood expression levels of cytokines (pro-inflammatory cytokines: CXCL2, CXCL10, interleukin [IL]-1β, IL-6, IL-18, IL-8, inflammasome complex (NLRP3), tumor necrosis factor-alpha [TNF-α]; anti-inflammatory cytokines: IL-4, IL-10, IL-13) in cognitively impaired patients with (n = 40, Amy+) and with no brain amyloidosis (n = 33, Amy-) and also in a group of controls (n = 10, no brain amyloidosis and no cognitive impairment). Amy+ patients showed higher levels of pro-inflammatory cytokines (IL-6, CXCL2, NLRP3, and IL-1β) compared with both controls and with Amy- patients. A reduction of the anti-inflammatory cytokine IL-10 was observed in Amy+ versus Amy-. Amy+ showed lower abundance of E. rectale and higher abundance of Escherichia/Shigella compared with both healthy controls (fold change, FC = -9.6, p < 0.001 and FC = +12.8, p < 0.001, respectively) and to Amy- (FC = -7.7, p < 0.001 and FC = +7.4, p = 0.003). A positive correlation was observed between pro-inflammatory cytokines IL-1β, NLRP3, and CXCL2 with abundance of the inflammatory bacteria taxon Escherichia/Shigella (rho = 0.60, p < 0.001; rho = 0.57, p < 0.001; and rho = 0.30, p = 0.007, respectively) and a negative correlation with the anti-inflammatory E. rectale (rho = -0.48, p < 0.001; rho = -0.25, p = 0.024; rho = -0.49, p < 0.001). Our data indicate that an increase in the abundance of a pro-inflammatory GMB taxon, Escherichia/Shigella, and a reduction in the abundance of an anti-inflammatory taxon, E. rectale, are possibly associated with a peripheral inflammatory state in patients with cognitive impairment and brain amyloidosis. A possible causal relation between GMB-related inflammation and amyloidosis deserves further investigation