44 research outputs found

    Laboratory photo-chemistry of covalently bonded fluorene clusters: observation of an interesting PAH bowl-forming mechanism

    Full text link
    The fullerene C60_{60}, one of the largest molecules identified in the interstellar medium (ISM), has been proposed to form top-down through the photo-chemical processing of large (more than 60 C-atoms) polycyclic aromatic hydrocarbon (PAH) molecules. In this article, we focus on the opposite process, investigating the possibility that fullerenes form from small PAHs, in which bowl-forming plays a central role. We combine laboratory experiments and quantum chemical calculations to study the formation of larger PAHs from charged fluorene clusters. The experiments show that with visible laser irradiation, the fluorene dimer cation - [C13_{13}H9_{9}−-C13_{13}H9_{9}]+^+ - and the fluorene trimer cation - [C13_{13}H9_{9}−-C13_{13}H8_{8}−-C13_{13}H9_{9}]+^+ - undergo photo-dehydrogenation and photo-isomerization resulting in bowl structured aromatic cluster-ions, C26_{26}H12_{12}+^+ and C39_{39}H20_{20}+^+, respectively. To study the details of this chemical process, we employ quantum chemistry that allows us to determine the structures of the newly formed cluster-ions, to calculate the hydrogen loss dissociation energies, and to derive the underlying reaction pathways. These results demonstrate that smaller PAH clusters (with less than 60 C-atoms) can convert to larger bowled geometries that might act as building blocks for fullerenes, as the bowl-forming mechanism greatly facilitates the conversion from dehydrogenated PAHs to cages. Moreover, the bowl-forming induces a permanent dipole moment that - in principle - allows to search for such species using radio astronomy.Comment: 8 pages, 7 figures, accepte

    BRAF V600E Status Sharply Differentiates Lymph Node Metastasis-associated Mortality Risk in Papillary Thyroid Cancer

    Get PDF
    [Context]: How lymph node metastasis (LNM)-associated mortality risk is affected by BRAF V600E in papillary thyroid cancer (PTC) remains undefined. [Objective]: To study whether BRAF V600E affected LNM-associated mortality in PTC. [Design, Setting, and Participants]: We retrospectively analyzed the effect of LNM on PTC-specific mortality with respect to BRAF status in 2638 patients (2015 females and 623 males) from 11 centers in 6 countries, with median age of 46 [interquartile range (IQR) 35-58] years and median follow-up time of 58 (IQR 26-107) months. [Results]: Overall, LNM showed a modest mortality risk in wild-type BRAF patients but a strong one in BRAF V600E patients. In conventional PTC (CPTC), LNM showed no increased mortality risk in wild-type BRAF patients but a robustly increased one in BRAF V600E patients; mortality rates were 2/659 (0.3%) vs 4/321 (1.2%) in non-LNM vs LNM patients (P = 0.094) with wild-type BRAF, corresponding to a hazard ratio (HR) (95% CI) of 4.37 (0.80-23.89), which remained insignificant at 3.32 (0.52-21.14) after multivariate adjustment. In BRAF V600E CPTC, morality rates were 7/515 (1.4%) vs 28/363 (7.7%) in non-LNM vs LNM patients (P < 0.001), corresponding to an HR of 4.90 (2.12-11.29) or, after multivariate adjustment, 5.76 (2.19-15.11). Adjusted mortality HR of coexisting LNM and BRAF V600E vs absence of both was 27.39 (5.15-145.80), with Kaplan-Meier analyses showing a similar synergism. [Conclusions]: LNM-associated mortality risk is sharply differentiated by the BRAF status in PTC; in CPTC, LNM showed no increased mortality risk with wild-type BRAF but a robust one with BRAF mutation. These results have strong clinical relevance.This work was supported partly by the following funding at the individual participating centers: Polish National Center of Research and Development MILESTONE Project—molecular diagnostics and imaging in individualized therapy for breast, thyroid and prostate cancer, grant No. STRATEGMED2/267398/4/ NCBR/2015 (Poland, AC, BJ); Grants No. PID2019-105303RB-I00 (AEI from MICINN), GCB14142311CRES (AECC Foundation), and B2017/BMD-3724 TIRONET2-CM (Spain; PS and GR-E); Grant No. AZV 16-32665A and MH CZ-DRO (Institute of Endocrinology-EU, 00023761) (Czech Republic; BB, VS); NIH/ National Institute on Aging Grant No. 5R03AG042334-02 (LY); and grants from the Qingdao Science and Technology Project for People’s Livelihood No.13-1-3-58-nsh (China; FW) and the Innovative Platform Project of Qingdao No.12-1-2-15-jch (China; YW)

    Optimal Decision Model Design of Diversified Port Investment

    No full text

    Rosmarinic acid alleviates diabetic osteoporosis by suppressing the activation of NLRP3 inflammasome in rats

    No full text
    Abstract Background Diabetic osteoporosis is a common metabolic bone disorder characterized by bone loss in diabetic patients, which causes an enormous social burden due to the unsatisfactory outcome of current therapeutic strategy. Methods Based on the importance of inflammasome activation in diabetic osteoporosis, we evaluated the protective effect of an antioxidant, rosmarinic acid (RA) in diabetic osteoporosis. Bone marrow-derived monocytes isolated from rats were treated with receptor activator of nuclear factor kappa-Β ligand (RANKL) and macrophage colony stimulating factor to differentiate into mature osteoclasts (OCs). Next OCs were stimulated with RA under high glucose condition to evaluate bone resorption. Next, streptozotocin (STZ)-injected rats were orally treated with 50 mg kg−1 RA to analyze its effect on diabetic osteoporosis. Results RA inhibited high glucose-stimulated inflammation and inflammasome activation in OCs. Bone resorption was also reduced after RA treatment as shown by the resorption pits assay. Moreover, RA significantly reduced bone resorption, alleviated bone weight loss and increased bone mineral density by inhibiting the activation of NACHT-LRR-PYD domains–containing protein 3 (NLRP3) inflammasome in STZ-induced diabetic rats, leading to the improvement of diabetic osteoporosis. Conclusion RA effectively ameliorates diabetic osteoporosis in STZ-induced rats by inhibiting the activation of NLRP3 inflammasome in OCs, which suggests that RA might serve as a potential candidate drug for treating diabetic osteoporosis

    Coherent Integration for Radar High-Speed Maneuvering Target Based on Frequency-Domain Second-Order Phase Difference

    No full text
    In recent years, target detection has drawn increasing attention in the field of radar signal processing. In this paper, we address the problem of coherent integration for detecting high-speed maneuvering targets, involving range migration (RM), quadratic RM (QRM), and Doppler frequency migration (DFM) within the coherent processing interval. We propose a novel coherent integration algorithm based on the frequency-domain second-order phase difference (FD-SoPD) approach. First, we use the FD-SoPD operation to reduce the signal from three to two dimensions and simultaneously eliminate the effects of QRM and DFM, which leads to signal-to-noise ratio improvement in the velocity-acceleration domain. Next, we estimate the target motion parameters from the peak position without the need for a search procedure. We show that this algorithm can be easily implemented by using complex multiplications combined with fast Fourier transform (FFT) and inverse FFT (IFFT) operations. We perform comparisons with several representative algorithms and show that the proposed technique can be used to achieve a good trade-off between computational complexity and detection performance. We present both simulated and experimental data to demonstrate the effectiveness of the proposed method

    Investigations of the Mechanical Properties and Durability of Reactive Powder Concrete Containing Waste Fly Ash

    No full text
    Waste fly ash (WFA) with pozzolanic activities may be advantageous to the mechanical properties of reactive powder concrete (RPC) when WFA partially replaces cement in RPC. In this study, RPC specimens with 0–25% WFA were prepared under the curing temperatures of 0, 20, and 40 °C for 3 to 120 days. The flowability of fresh RPC, the mechanical strengths, and the NaCl freeze–thaw damage were investigated. Additionally, the following carbonation depths after different NaCl freeze–thaw cycles and the leaching amount of toxic metal elements were also determined experimentally. The results indicated that the incorporation of WFA could decrease the slump flow of fresh RPC due to the relatively smaller particle size of WFA. With an increase in the WFA content, the early-age flexural and compressive strengths first exhibited an increasing and then decreasing trend. However, WFA will always deteriorate the long-term mechanical properties, and both flexural and compressive strengths can be reduced by up to 25% when cured for 120 days. A higher temperature (i.e., 40 °C) was found to benefit the mechanical properties, especially when cured for 3 days. The RPC with 10% WFA exhibited the optimum salt-freezing resistance with an approximately 30% reduction in the mass loss rate when the NaCl freeze–thaw cycles reached 300. The improvement in durability can be attributed to a more compact microstructure of RPC with WFA through microscopic observations. The relationships between the mass and mechanical strength loss rates can be expressed through positive correlation quadratic functions. The carbonation depth decreased following a quadratic function with increasing mass ratios of WFA and NaCl freeze–thaw cycles. The leaching amounts of Cr and Zn increased with increasing WFA content over time, and the cumulative values reached equilibrium at 5 months
    corecore