28 research outputs found

    Familial recurrence of SOX2 anophthalmia syndrome:phenotypically normal mother with two affected daughters

    Get PDF
    The SOX2 anophthalmia syndrome is emerging as a clinically recognizable disorder that has been identified in 10–15% of individuals with bilateral anophthalmia. Extra-ocular anomalies are common. The majority of SOX2 mutations identified appear to arise de novo in probands ascertained through the presence of anophthalmia or microphthalmia. In this report, we describe two sisters with bilateral anophthalmia/microphthalmia, brain anomalies and a novel heterozygous SOX2 gene single-base pair nucleotide deletion, c.551delC, which predicts p.Pro184ArgfsX19. The hypothetical protein product is predicted to lead to haploinsufficient SOX2 function. Mosaicism for this mutation in the SOX2 gene was also identified in their clinically unaffected mother in peripheral blood DNA. Thus it cannot be assumed that all SOX2 mutations in individuals with anophthalmia /microphthalmia are de novo. Testing of parents is indicated when a SOX2 mutation is identified in a proband

    ALDH1A3 loss of function causes bilateral anophthalmia/microphthalmia and hypoplasia of the optic nerve and optic chiasm

    Get PDF
    The major active retinoid, all-trans retinoic acid, has long been recognized as critical for the development of several organs, including the eye. Mutations in STRA6, the gene encoding the cellular receptor for vitamin A, in patients with Matthew-Wood syndrome and anophthalmia/microphthalmia (A/M), have previously demonstrated the importance of retinol metabolism in human eye disease. We used homozygosity mapping combined with next-generation sequencing to interrogate patients with anophthalmia and microphthalmia for new causative genes. We used whole-exome and whole-genome sequencing to study a family with two affected brothers with bilateral A/M and a simplex case with bilateral anophthalmia and hypoplasia of the optic nerve and optic chiasm. Analysis of novel sequence variants revealed homozygosity for two nonsense mutations in ALDH1A3, c.568A>G, predicting p.Lys190*, in the familial cases, and c.1165A>T, predicting p.Lys389*, in the simplex case. Both mutations predict nonsense-mediated decay and complete loss of function. We performed antisense morpholino (MO) studies in Danio rerio to characterize the developmental effects of loss of Aldh1a3 function. MO-injected larvae showed a significant reduction in eye size, and aberrant axonal projections to the tectum were noted. We conclude that ALDH1A3 loss of function causes anophthalmia and aberrant eye development in humans and in animal model system

    The ClinGen Epilepsy Gene Curation Expert Panel—Bridging the divide between clinical domain knowledge and formal gene curation criteria

    Get PDF
    The field of epilepsy genetics is advancing rapidly and epilepsy is emerging as a frequent indication for diagnostic genetic testing. Within the larger ClinGen framework, the ClinGen Epilepsy Gene Curation Expert Panel is tasked with connecting two increasingly separate fields: the domain of traditional clinical epileptology, with its own established language and classification criteria, and the rapidly evolving area of diagnostic genetic testing that adheres to formal criteria for gene and variant curation. We identify critical components unique to the epilepsy gene curation effort, including: (a) precise phenotype definitions within existing disease and phenotype ontologies; (b) consideration of when epilepsy should be curated as a distinct disease entity; (c) strategies for gene selection; and (d) emerging rules for evaluating functional models for seizure disorders. Given that de novo variants play a prominent role in many of the epilepsies, sufficient genetic evidence is often awarded early in the curation process. Therefore, the emphasis of gene curation is frequently shifted toward an iterative precuration process to better capture phenotypic associations. We demonstrate that within the spectrum of neurodevelopmental disorders, gene curation for epilepsy-associated genes is feasible and suggest epilepsy-specific conventions, laying the groundwork for a curation process of all major epilepsy-associated genes

    Targeted 'Next-Generation' sequencing in anophthalmia and microphthalmia patients confirms SOX2, OTX2 and FOXE3 mutations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anophthalmia/microphthalmia (A/M) is caused by mutations in several different transcription factors, but mutations in each causative gene are relatively rare, emphasizing the need for a testing approach that screens multiple genes simultaneously. We used next-generation sequencing to screen 15 A/M patients for mutations in 9 pathogenic genes to evaluate this technology for screening in A/M.</p> <p>Methods</p> <p>We used a pooled sequencing design, together with custom single nucleotide polymorphism (SNP) calling software. We verified predicted sequence alterations using Sanger sequencing.</p> <p>Results</p> <p>We verified three mutations - c.542delC in S<it>OX2</it>, resulting in p.Pro181Argfs*22, p.Glu105X in <it>OTX2 </it>and p.Cys240X in <it>FOXE3</it>. We found several novel sequence alterations and SNPs that were likely to be non-pathogenic - p.Glu42Lys in <it>CRYBA4</it>, p.Val201Met in <it>FOXE3 </it>and p.Asp291Asn in <it>VSX2</it>. Our analysis methodology gave one false positive result comprising a mutation in <it>PAX6 </it>(c.1268A > T, predicting p.X423LeuextX*15) that was not verified by Sanger sequencing. We also failed to detect one 20 base pair (bp) deletion and one 3 bp duplication in <it>SOX2</it>.</p> <p>Conclusions</p> <p>Our results demonstrated the power of next-generation sequencing with pooled sample groups for the rapid screening of candidate genes for A/M as we were correctly able to identify disease-causing mutations. However, next-generation sequencing was less useful for small, intragenic deletions and duplications. We did not find mutations in 10/15 patients and conclude that there is a need for further gene discovery in A/M.</p

    Association of a de novo 16q copy number variant with a phenotype that overlaps with Lenz microphthalmia and Townes-Brocks syndromes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anophthalmia and microphthalmia are etiologically and clinically heterogeneous. Lenz microphthalmia is a syndromic form that is typically inherited in an X-linked pattern, though the causative gene mutation is unknown. Townes-Brocks syndrome manifests thumb anomalies, imperforate anus, and ear anomalies. We present a 13-year-old boy with a syndromic microphthalmia phenotype and a clinical diagnosis of Lenz microphthalmia syndrome.</p> <p>Case Presentation</p> <p>The patient was subjected to clinical and molecular evaluation, including array CGH analysis. The clinical features included left clinical anophthalmia, right microphthalmia, anteriorly placed anus with fistula, chordee, ventriculoseptal defect, patent ductus arteriosus, posteriorly rotated ears, hypotonia, growth retardation with delayed bone age, and mental retardation. The patient was found to have an approximately 5.6 Mb deletion of 16q11.2q12.1 by microarray based-comparative genomic hybridization, which includes the <it>SALL1 </it>gene, which causes Townes-Brocks syndrome.</p> <p>Conclusions</p> <p>Deletions of 16q11.2q12.2 have been reported in several individuals, although those prior reports did not note microphthalmia or anophthalmia. This region includes <it>SALL1</it>, which causes Townes-Brocks syndrome. In retrospect, this child has a number of features that can be explained by the <it>SALL1 </it>deletion, although it is not clear if the microphthalmia is a rare feature of Townes-Brocks syndrome or caused by other mechanisms. These data suggest that rare copy number changes may be a cause of syndromic microphthalmia allowing a personalized genomic medicine approach to the care of patients with these aberrations.</p

    Loss of the BMP Antagonist, SMOC-1, Causes Ophthalmo-Acromelic (Waardenburg Anophthalmia) Syndrome in Humans and Mice

    Get PDF
    Ophthalmo-acromelic syndrome (OAS), also known as Waardenburg Anophthalmia syndrome, is defined by the combination of eye malformations, most commonly bilateral anophthalmia, with post-axial oligosyndactyly. Homozygosity mapping and subsequent targeted mutation analysis of a locus on 14q24.2 identified homozygous mutations in SMOC1 (SPARC-related modular calcium binding 1) in eight unrelated families. Four of these mutations are nonsense, two frame-shift, and two missense. The missense mutations are both in the second Thyroglobulin Type-1 (Tg1) domain of the protein. The orthologous gene in the mouse, Smoc1, shows site- and stage-specific expression during eye, limb, craniofacial, and somite development. We also report a targeted pre-conditional gene-trap mutation of Smoc1 (Smoc1tm1a) that reduces mRNA to ∼10% of wild-type levels. This gene-trap results in highly penetrant hindlimb post-axial oligosyndactyly in homozygous mutant animals (Smoc1tm1a/tm1a). Eye malformations, most commonly coloboma, and cleft palate occur in a significant proportion of Smoc1tm1a/tm1a embryos and pups. Thus partial loss of Smoc-1 results in a convincing phenocopy of the human disease. SMOC-1 is one of the two mammalian paralogs of Drosophila Pentagone, an inhibitor of decapentaplegic. The orthologous gene in Xenopus laevis, Smoc-1, also functions as a Bone Morphogenic Protein (BMP) antagonist in early embryogenesis. Loss of BMP antagonism during mammalian development provides a plausible explanation for both the limb and eye phenotype in humans and mice

    A Novel SPAST/SPG4 Splice-Site Variant in a Family with Dominant Hereditary Spastic Paraplegia

    No full text
    Some causes of spastic paraplegia are treatable and many are not. Diagnostic work-up to determine the etiology can be costly and invasive. Here we report the case of a man with slowly progressive spastic paraparesis. Using a multigene next-generation sequencing (NGS) panel, we identified a novel variant in the consensus splice site of the SPAST gene (exon 13, c.1536G>A, heterozygous), affecting codon 512 of the SPAST mRNA. The observed variant segregated with the disease in four tested family members. In this case, genetic confirmation obviated the need for additional testing such as MRI and lumbar puncture and helped the patient and his family understand his condition and prognosis. We conclude with a brief discussion of the SPG4/SPAST gene and the role of multigene panels in the diagnosis and management of hereditary spastic paraplegia
    corecore