824 research outputs found

    Genome sequence of Acetomicrobium hydrogeniformans OS1

    Get PDF
    Acetomicrobium hydrogeniformans, an obligate anaerobe of the phylum Synergistetes, was isolated from oil production water. It has the unusual ability to produce almost 4 molecules H2/molecule glucose. The draft genome of A. hydrogeniformans OS1 (DSM 22491T) is 2,123,925 bp, with 2,068 coding sequences and 60 RNA genes

    Evidence for Hysteretic Substrate Channeling in the Proline Dehydrogenaseand ∆\u3csup\u3e1\u3c/sup\u3e-Pyrroline-5-carboxylate Dehydrogenase Coupled Reaction of Proline UtilizationA(PutA)

    Get PDF
    Background: PutA from Escherichia coli is a bifunctional enzyme and transcriptional repressor in proline catabolism. Results: Steady-state and transient kinetic data revealed a mechanism in which the two enzymatic reactions are coupled by an activation step. Conclusion: Substrate channeling in PutA exhibits hysteretic behavior. Significance: This is the first kinetic model of bi-enzyme activity in PutA and reveals a novel mechanism of channeling activation

    Exploring Expressions of Possible Selves with High School and College Students with Learning Disabilities

    Get PDF
    In this article, we explore a program designed to engage high school and college students with learning disabilities (LD) in conversations about their hopes, expectations, and fears for the future. We explore the mindset of students by focusing on their self-identified passions for life and sense of strengths and limitations. We found that males and females differed in goals related to Academics, Work Ethic, Degree Specific Statements, and Money and Finances. For example, females emphasized “Academic Goals” more frequently than males and focused on topics such as GPA and work ethic in school. However, males made more “Degree Specific Statements” than females, more often emphasizing the desire to be financially stable or have a career with a large income. These differences suggest that college transition staff may want to focus on goals identified by male and female students with LD as a way to be more responsive to student self-identified goals

    Hedgehog/Gli supports androgen signaling in androgen deprived and androgen independent prostate cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Castration resistant prostate cancer (CRPC) develops as a consequence of hormone therapies used to deplete androgens in advanced prostate cancer patients. CRPC cells are able to grow in a low androgen environment and this is associated with anomalous activity of their endogenous androgen receptor (AR) despite the low systemic androgen levels in the patients. Therefore, the reactivated tumor cell androgen signaling pathway is thought to provide a target for control of CRPC. Previously, we reported that Hedgehog (Hh) signaling was conditionally activated by androgen deprivation in androgen sensitive prostate cancer cells and here we studied the potential for cross-talk between Hh and androgen signaling activities in androgen deprived and androgen independent (AI) prostate cancer cells.</p> <p>Results</p> <p>Treatment of a variety of androgen-deprived or AI prostate cancer cells with the Hh inhibitor, cyclopamine, resulted in dose-dependent modulation of the expression of genes that are regulated by androgen. The effect of cyclopamine on endogenous androgen-regulated gene expression in androgen deprived and AI prostate cancer cells was consistent with the suppressive effects of cyclopamine on the expression of a reporter gene (luciferase) from two different androgen-dependent promoters. Similarly, reduction of smoothened (Smo) expression with siRNA co-suppressed expression of androgen-inducible KLK2 and KLK3 in androgen deprived cells without affecting the expression of androgen receptor (AR) mRNA or protein. Cyclopamine also prevented the outgrowth of AI cells from androgen growth-dependent parental LNCaP cells and suppressed the growth of an overt AI-LNCaP variant whereas supplemental androgen (R1881) restored growth to the AI cells in the presence of cyclopamine. Conversely, overexpression of Gli1 or Gli2 in LNCaP cells enhanced AR-specific gene expression in the absence of androgen. Overexpressed Gli1/Gli2 also enabled parental LNCaP cells to grow in androgen depleted medium. AR protein co-immunoprecipitates with Gli2 protein from transfected 293T cell lysates.</p> <p>Conclusions</p> <p>Collectively, our results indicate that Hh/Gli signaling supports androgen signaling and AI growth in prostate cancer cells in a low androgen environment. The finding that Gli2 co-immunoprecipitates with AR protein suggests that an interaction between these proteins might be the basis for Hedgehog/Gli support of androgen signaling under this condition.</p

    Assessment of the reproducibility and inter-site transferability of the murine direct splenocyte mycobacterial growth inhibition assay (MGIA)

    Get PDF
    Tuberculosis (TB) vaccine candidates must be tested for safety and efficacy using preclinical challenge models prior to advancement to human trials, because of the lack of a validated immune correlate or biomarker of protection. New, unbiased tools are urgently needed to expedite the selection of vaccine candidates at an early stage of development and reduce the number of animals experimentally infected with virulent Mycobacterium tuberculosis (M.tb). In recent years, there has been a concerted effort to develop standardised functional ex vivo mycobacterial growth inhibition assays (MGIAs) as a potential surrogate read-out of vaccine efficacy. We have previously described a direct MGIA for use with mouse splenocytes. In the current study, we set out to systematically compare co-culture conditions for the murine direct splenocyte MGIA with respect to both intra-assay repeatability and inter-site reproducibility. Common sample sets were shared between laboratory sites and reproducibility and sensitivity to detect a BCG-vaccine induced response were assessed. Co-culturing 5×106 splenocytes in 48-well plates resulted in improved reproducibility and superior sensitivity to detect a vaccine response compared with standing or rotating sealed 2ml screw-cap tubes. As the difference between naïve and BCG vaccinated mice was not consistently detected across both sample sets at both sites, we sought to further improve assay sensitivity by altering the multiplicity of infection (MOI). Cell viability at the end of the co-culture period was improved when splenocyte input number was reduced, with the highest viability for the condition of 3×106 splenocytes in 48-well plates. This cell input was also associated with the greatest sensitivity to detect a BCG vaccine-mediated MGIA response using an M.tb inoculum. Based on our findings, we recommend optimal co-culture conditions in a move towards aligning direct MGIA protocols and generating a cross-species consensus for early evaluation of TB vaccine candidates and biomarker studies

    Evidence for Hysteretic Substrate Channeling in the Proline Dehydrogenaseand ∆\u3csup\u3e1\u3c/sup\u3e-Pyrroline-5-carboxylate Dehydrogenase Coupled Reaction of Proline UtilizationA(PutA)

    Get PDF
    Background: PutA from Escherichia coli is a bifunctional enzyme and transcriptional repressor in proline catabolism. Results: Steady-state and transient kinetic data revealed a mechanism in which the two enzymatic reactions are coupled by an activation step. Conclusion: Substrate channeling in PutA exhibits hysteretic behavior. Significance: This is the first kinetic model of bi-enzyme activity in PutA and reveals a novel mechanism of channeling activation

    Evolution dynamics of a dense frozen Rydberg gas to plasma

    Get PDF
    Dense samples of cold Rydberg atoms have previously been observed to spontaneously evolve to a plasma, despite the fact that each atom may be bound by as much as 100 cm−1. Initially, ionization is caused by blackbody photoionization and Rydberg-Rydberg collisions. After the first electrons leave the interaction re- gion, the net positive charge traps subsequent electrons. As a result, rapid ionization starts to occur after 1 μs caused by electron-Rydberg collisions. The resulting cold plasma expands slowly and persists for tens of microseconds. While the initial report on this process identified the key issues described above, it failed to resolve one key aspect of the evolution process. Specifically, redistribution of population to Rydberg states other than the one initially populated was not observed, a necessary mechanism to maintain the energy balance in the system. Here we report new and expanded observations showing such redistribution and confirming theoretical predictions concerning the evolution to a plasma. These measurements also indicate that, for high n states of purely cold Rydberg samples, the initial ionization process which leads to electron trapping is one involving the interactions between Rydberg atoms
    corecore