147 research outputs found

    Experimental investigation of electron cooling and stacking of lead ions in a low energy accumulation ring

    Get PDF
    This report gives the results of a programme of experimental investigations, which were carried out to test stacking of lead ions in a storage ring (the former Low Energy Antiproton Ring, LEAR) at 4.2 MeV per nucleon. The motivation was to demonstrate the feasibility of gaining the large factor in the phase-space density required for injection into the LHC. In the first part of the report, the layout of the experiments is described, the choice of the parameters of the electron cooling system used for stacking is reported and the multi-turn injection using horizontal- and longitudinal- (and in the final project also vertical-) phase space is discussed. In the second part the experimental results are presented. Factors of vital importance are the stacking efficiency, the beam life-time and the cooling time of the ions. The beam decay owing to charge exchange with the residual gas and to recombination by the capture of cooling electrons was intensively studied. Beam instabilities and space-charge effects in the ion beam turned out to be additional, although less serious, limitations of the accumulation rate. The cooling speed as a function of cooler and storage-ring properties was investigated over a wide range of parameters. Among the 'surprises' encountered are an anomalously fast recombination rate for certain ion charge states (Pb53+), a strong dependence of the cooling time on the dispersion function of the storage ring, and an intensity-dependent outgassing of equipment in the vacuum chamber. After a careful choice of parameters and antidotes, an overall factor of 120 in intensity could be gained, by multi-turn injection and stacking for 4 s. The intensity obtained (6x1086 x 10^8 ions with a length corresponding to four LHC bunches) is only a factor of two short of the LHC requirement, and the stacking time (4 s instead of 2 s foreseen for filling each LHC ring in 8 min) is another factor of two off

    Cranial Pathologies in a Specimen of Pachycephalosaurus

    Get PDF
    . The specimen features two large oval depressions on the dorsal surface, accompanied by numerous circular pits on the margin and inner surface of the larger depressions.In order to identify the origin of these structures, computed tomography (CT) data and morphological characteristics of the specimen are analyzed and compared with similar osteological structures in fossil and extant archosaurs caused by taphonomic processes, non-pathologic bone resorption, and traumatic infection/inflammatory origins. The results of these analyses suggest that the structures are pathologic lesions likely resulting from a traumatic injury and followed by secondary infection at the site.The presence of lesions on a frontoparietal dome, and the exclusivity of their distribution along the dorsal dome surface, offers further insight into frontoparietal dome function and supports previously hypothesized agonistic behavior in pachycephalosaurids

    Recent Results on Lead-Ion Accumulation in LEAR for the LHC

    Get PDF
    To prepare dense bunches of lead ions for the LHC it has been proposed to accumulate the 4.2 MeV/u linac beam in a storage ring with electron cooling. A series of experiments is being performed in the low-energy ring LEAR to test this technique. First results were already reported at the Beam Crystallisation Workshop in Erice in November 1995. Two more recent runs to complement these investigations were concerned with: further study of the beam lifetime; the dependence of the cooling time on optical settings of the storage ring and on neutralization of the electron beam; tests in view of multiturn injection. New results obtained in these two runs in December 1995 and in April 1996 will be discussed in this contribution

    In Vivo Monitoring of mRNA Movement in Drosophila Body Wall Muscle Cells Reveals the Presence of Myofiber Domains

    Get PDF
    Background: In skeletal muscle each muscle cell, commonly called myofiber, is actually a large syncytium containing numerous nuclei. Experiments in fixed myofibers show that mRNAs remain localized around the nuclei in which they are produced. Methodology/Principal Findings: In this study we generated transgenic flies that allowed us to investigate the movement of mRNAs in body wall myofibers of living Drosophila embryos. We determined the dynamic properties of GFP-tagged mRNAs using in vivo confocal imaging and photobleaching techniques and found that the GFP-tagged mRNAs are not free to move throughout myofibers. The restricted movement indicated that body wall myofibers consist of three domains. The exchange of mRNAs between the domains is relatively slow, but the GFP-tagged mRNAs move rapidly within these domains. One domain is located at the centre of the cell and is surrounded by nuclei while the other two domains are located at either end of the fiber. To move between these domains mRNAs have to travel past centrally located nuclei. Conclusions/Significance: These data suggest that the domains made visible in our experiments result from prolonged interactions with as yet undefined structures close to the nuclei that prevent GFP-tagged mRNAs from rapidly moving between the domains. This could be of significant importance for the treatment of myopathies using regenerative cellbase

    A methodology for identifying high-need, high-cost patient personas for international comparisons.

    Get PDF
    ObjectiveTo establish a methodological approach to compare two high-need, high-cost (HNHC) patient personas internationally.Data sourcesLinked individual-level administrative data from the inpatient and outpatient sectors compiled by the International Collaborative on Costs, Outcomes, and Needs in Care (ICCONIC) across 11 countries: Australia, Canada, England, France, Germany, the Netherlands, New Zealand, Spain, Sweden, Switzerland, and the United States.Study designWe outline a methodological approach to identify HNHC patient types for international comparisons that reflect complex, priority populations defined by the National Academy of Medicine. We define two patient profiles using accessible patient-level datasets linked across different domains of care-hospital care, primary care, outpatient specialty care, post-acute rehabilitative care, long-term care, home-health care, and outpatient drugs. The personas include a frail older adult with a hip fracture with subsequent hip replacement and an older person with complex multimorbidity, including heart failure and diabetes. We demonstrate their comparability by examining the characteristics and clinical diagnoses captured across countries.Data collection/extraction methodsData collected by ICCONIC partners.Principal findingsAcross 11 countries, the identification of HNHC patient personas was feasible to examine variations in healthcare utilization, spending, and patient outcomes. The ability of countries to examine linked, individual-level data varied, with the Netherlands, Canada, and Germany able to comprehensively examine care across all seven domains, whereas other countries such as England, Switzerland, and New Zealand were more limited. All countries were able to identify a hip fracture persona and a heart failure persona. Patient characteristics were reassuringly similar across countries.ConclusionAlthough there are cross-country differences in the availability and structure of data sources, countries had the ability to effectively identify comparable HNHC personas for international study. This work serves as the methodological paper for six accompanying papers examining differences in spending, utilization, and outcomes for these personas across countries

    Status of the compactlight design study*

    Get PDF
    CompactLight (XLS) is an International Collaboration of 24 partners and 5 third parties, funded by the European Union through the Horizon 2020 Research and Innovation Programme. The main goal of the project, which started in January 2018 with a duration of 36 months, is the design of an hard X-ray FEL facility beyond today’s state of the art, using the latest concepts for bright electron photo-injectors, high-gradient accelerating structures, and innovative short-period undulators. The specifications of the facility and the parameters of the future FEL are driven by the demands of potential users and the associated science cases. In this paper we will give an overview on the ongoing activities and the major results achieved until now

    Exercise capacity in children with isolated congenital complete atrioventricular block: does pacing make a difference?

    Get PDF
    Item does not contain fulltextThe management of patients with isolated congenital complete atrioventricular block (CCAVB) has changed during the last decades. The current policy is to pace the majority of patients based on a variety of criteria, among which is limited exercise capacity. Data regarding exercise capacity in this population stems from previous publications reporting small case series of unpaced patients. Therefore, we have investigated the exercise capacity of a group of contemporary children with CCAVB. Sixteen children (mean age 11.5 +/- 4; seven boys, nine girls) with CCAVB were tested. In 13 patients, a median number of three pacemakers were implanted, whereas in three patients no pacemaker was given. All patients had an echocardiogram and completed a cardiopulmonary cycle exercise test. Exercise parameters were determined and compared with reference values obtained from healthy Dutch peers. The peak oxygen uptake/body mass was reduced to 34.4 +/- 9.5 ml kg(-1) min(-1) (79 +/- 24% of predicted) and the ventilatory threshold was reduced to 52 +/- 17% of peak oxygen uptake (78 +/- 21% of predicted), whereas the peak work load/body mass was 2.8 +/- 0.6 W/kg (91 +/- 24% of predicted), which was similar to controls. Importantly, 25% of the paced patients showed upper rate restriction by the pacemaker. In conclusion, children with CCAVB show a reduced peak oxygen uptake and ventilatory threshold, whereas they show normal peak work rates. This indicates that they generate more energy during exercise from anaerobic energy sources. Paced children with CCAVB do not perform better than unpaced children.1 april 201

    Centriole movements in mammalian epithelial cells during cytokinesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In cytokinesis, when the cleavage furrow has been formed, the two centrioles in each daughter cell separate. It has been suggested that the centrioles facilitate and regulate cytokinesis to some extent. It has been postulated that termination of cytokinesis (abscission) depends on the migration of a centriole to the intercellular bridge and then back to the cell center. To investigate the involvement of centrioles in cytokinesis, we monitored the movements of centrioles in three mammalian epithelial cell lines, HeLa, MCF 10A, and the p53-deficient mouse mammary tumor cell line KP-7.7, by time-lapse imaging. Centrin1-EGFP and α-Tubulin-mCherry were co-expressed in the cells to visualize respectively the centrioles and microtubules.</p> <p>Results</p> <p>Here we report that separated centrioles that migrate from the cell pole are very mobile during cytokinesis and their movements can be characterized as 1) along the nuclear envelope, 2) irregular, and 3) along microtubules forming the spindle axis. Centriole movement towards the intercellular bridge was only seen occasionally and was highly cell-line dependent.</p> <p>Conclusions</p> <p>These findings show that centrioles are highly mobile during cytokinesis and suggest that the repositioning of a centriole to the intercellular bridge is not essential for controlling abscission. We suggest that centriole movements are microtubule dependent and that abscission is more dependent on other mechanisms than positioning of centrioles.</p
    corecore