525 research outputs found

    Coarse--graining, fixed points, and scaling in a large population of neurons

    Full text link
    We develop a phenomenological coarse--graining procedure for activity in a large network of neurons, and apply this to recordings from a population of 1000+ cells in the hippocampus. Distributions of coarse--grained variables seem to approach a fixed non--Gaussian form, and we see evidence of scaling in both static and dynamic quantities. These results suggest that the collective behavior of the network is described by a non--trivial fixed point

    Cultivating equality: delivering just and sustainable food systems in a changing climate

    Get PDF
    T oday, the world faces a greater challenge perhaps than ever before: tackling hunger and malnutrition in the face of climate change and increasing natural resource scarcity. Civil society, governments, researchers, donors, and the private sector are simultaneously debating and collaborating to find solutions. But the dialogue is over-emphasizing food production. Improving yields is important, particularly in places where there is not enough food or where food producers live in poverty. But simply producing more is not enough to tackle hunger. Furthermore, acknowledging that lack of food is not the sole cause of hunger is important. Inequality shapes who has access to food and the resources to grow it and buy it. It governs who eats first and who eats worst. Inequality determines who can adapt more readily to a changing climate. Hunger and poverty are not an accident – they are the result of social and economic injustice and inequality at all levels, from household to global. The reality of inequality is no truer for anyone than it is for women – half the world’s population, with far less than their fair share of the world’s resources. If we are to achieve the new Sustainable Development Goal of ending hunger by 2030, we must address the underlying inequalities in food systems. In a changing climate, agriculture and food systems must be sustainable and productive – but our efforts cannot end there. They must be profitable for those for whom it is a livelihood; they must be equitable, to facilitate a level playing field in the market, to secure rights to resources for food producers, and to ensure access to nutritious food for all; they must be resilient to build the capacity of populations vulnerable to economic shocks, political instability, and increasing, climate-induced natural hazards to recover and still lift themselves out of poverty

    Sources of noise during accumulation of evidence in unrestrained and voluntarily head-restrained rats

    Get PDF
    Abstract Decision-making behavior is often characterized by substantial variability, but its source remains unclear. We developed a visual accumulation of evidence task designed to quantify sources of noise and to be performed during voluntary head restraint, enabling cellular resolution imaging in future studies. Rats accumulated discrete numbers of flashes presented to the left and right visual hemifields and indicated the side that had the greater number of flashes. Using a signaldetection theory-based model, we found that the standard deviation in their internal estimate of flash number scaled linearly with the number of flashes. This indicates a major source of noise that, surprisingly, is not consistent with the widely used 'drift-diffusion modeling' (DDM) approach but is instead closely related to proposed models of numerical cognition and counting. We speculate that this form of noise could be important in accumulation of evidence tasks generally

    Autonomous detection and anticipation of jam fronts from messages propagated by inter-vehicle communication

    Get PDF
    In this paper, a minimalist, completely distributed freeway traffic information system is introduced. It involves an autonomous, vehicle-based jam front detection, the information transmission via inter-vehicle communication, and the forecast of the spatial position of jam fronts by reconstructing the spatiotemporal traffic situation based on the transmitted information. The whole system is simulated with an integrated traffic simulator, that is based on a realistic microscopic traffic model for longitudinal movements and lane changes. The function of its communication module has been explicitly validated by comparing the simulation results with analytical calculations. By means of simulations, we show that the algorithms for a congestion-front recognition, message transmission, and processing predict reliably the existence and position of jam fronts for vehicle equipment rates as low as 3%. A reliable mode of operation already for small market penetrations is crucial for the successful introduction of inter-vehicle communication. The short-term prediction of jam fronts is not only useful for the driver, but is essential for enhancing road safety and road capacity by intelligent adaptive cruise control systems.Comment: Published in the Proceedings of the Annual Meeting of the Transportation Research Board 200

    Summer CO2 evasion from streams and rivers in the Kolyma River basin, north-east Siberia

    Get PDF
    Inland water systems are generally supersaturated in carbon dioxide (CO2) and are increasingly recognized as playing an important role in the global carbon cycle. The Arctic may be particularly important in this respect, given the abundance of inland waters and carbon contained in Arctic soils; however, a lack of trace gas measurements from small streams in the Arctic currently limits this understanding.We investigated the spatial variability of CO2 evasion during the summer low-flow period from streams and rivers in the northern portion of the Kolyma River basin in north-eastern Siberia. To this end, partial pressure of carbon dioxide (pCO2) and gas exchange velocities (k) were measured at a diverse set of streams and rivers to calculate CO2 evasion fluxes. We combined these CO2 evasion estimates with satellite remote sensing and geographic information system techniques to calculate total areal CO2 emissions. Our results show that small streams are substantial sources of atmospheric CO2 owing to high pCO2 and k, despite being a small portion of total inland water surface area. In contrast, large rivers were generally near equilibrium with atmospheric CO2. Extrapolating our findings across the Panteleikha-Ambolikha sub-watersheds demonstrated that small streams play a major role in CO2 evasion, accounting for 86% of the total summer CO2 emissions from inland waters within these two sub-watersheds. Further expansion of these regional CO2 emission estimates across time and space will be critical to accurately quantify and understand the role of Arctic streams and rivers in the global carbon budget
    corecore