194 research outputs found

    Interference of Cooper quartet Andreev bound states in a multi-terminal graphene-based Josephson junction

    Full text link
    In a Josephson junction (JJ), Cooper pairs are transported via Andreev bound states (ABSs) between superconductors. The ABSs in the weak link of multi-terminal (MT) JJs can coherently hybridize two Cooper pairs among different superconducting electrodes, resulting in the Cooper quartet (CQ) involving four fermions entanglement. The energy spectrum of these CQ-ABS can be controlled by biasing MT-JJs due to the AC Josephson effect. Here, using gate tunable four-terminal graphene JJs complemented with a flux loop, we construct CQs with a tunable spectrum. The critical quartet supercurrent exhibits magneto-oscillation associated with a charge of 4e; thereby presenting the evidence for interference between entangled CQ-ABS. At a finite bias voltage, we find the DC quartet supercurrent shows non-monotonic bias dependent behavior, attributed to Landau-Zener transitions between different Floquet bands. Our experimental demonstration of coherent non-equilibrium CQ-ABS sets a path for design of artificial topological materials based on MT-JJs

    Probing the Formation of Dark Interlayer Excitons via Ultrafast Photocurrent

    Get PDF
    Optically dark excitons determine a wide range of properties of photoexcited semiconductors yet are hard to access via conventional time-resolved spectroscopies. Here, we develop a time-resolved ultrafast photocurrent technique (trPC) to probe the formation dynamics of optically dark excitons. The nonlinear nature of the trPC makes it particularly sensitive to the formation of excitons occurring at the femtosecond time scale after the excitation. As a proof of principle, we extract the interlayer exciton formation time of 0.4 ps at 160 μJ/cm2 fluence in a MoS2/MoSe2 heterostructure and show that this time decreases with fluence. In addition, our approach provides access to the dynamics of carriers and their interlayer transport. Overall, our work establishes trPC as a technique to study dark excitons in various systems that are hard to probe by other approaches

    Counterintuitive gate dependence of weak antilocalization in bilayer graphene/WSe2_2 heterostructures

    Get PDF
    Strong gate control of proximity-induced spin-orbit coupling was recently predicted in bilayer graphene/transition metal dichalcogenides (BLG/TMDC) heterostructures, as charge carriers can easily be shifted between the two graphene layers, and only one of them is in close contact to the TMDC. The presence of spin-orbit coupling can be probed by weak antilocalization (WAL) in low field magnetotransport measurements. When the spin-orbit splitting in such a heterostructure increases with the out of plane electric displacement field Dˉ\bar D, one intuitively expects a concomitant increase of WAL visibility. Our experiments show that this is not the case. Instead, we observe a maximum of WAL visibility around Dˉ=0\bar D=0. This counterintuitive behaviour originates in the intricate dependence of WAL in graphene on symmetric and antisymmetric spin lifetimes, caused by the valley-Zeeman and Rashba terms, respectively. Our observations are confirmed by calculating spin precession and spin lifetimes from an 8×88\times 8 model Hamiltonian of BLG/TMDC.Comment: Accepted by Phys Rev

    Assessing legacy contaminants in sediments from marine protected areas of the central coast of São Paulo (Brazil)

    Get PDF
    The presence of legacy contaminants in sediments from three Marine Protected Areas (MPAs) of the coast of São Paulo State was evaluated. Four sampling surveys were conducted between 2013 and 2015 in 10 sites, distributed along the Laje de Santos Marine and Xixova-Japui State Parks (PEMLS and XJSP, respectively) and Central Coast Marine Protection Area (APAMLC). Samples were analyzed for sediment texture, total organic carbon, CaCO3, metals (Al, Fe, Hg, Cd, Co, Cr, Cu, Ni, Pb and Zn), aliphatic and polycyclic aromatic hydrocarbons (AH and PAH). Sediments were generally sandy (excepting muddy samples from APAMLC), with variable amounts of TOC, OM and CaCO3. Most of the sediments exhibited low to moderate concentrations of metals, except APAMLC. Low contamination of sediments by hydrocarbons was found but samples from XLSP and APAMLC exhibited the highest concentrations of biogenic AH and PAH from pyrogenic sources. In APAMLC and PEMLS, the levels of metals can be considered as background levels according to geochemical indices (Igeo and EF). In XJSP and especially in APAMLC data indicated poor sediment quality, probably due to the effect of anthropic activities.A contaminação dos sedimentos superficiais foi avaliada neste estudo em amostras de áreas marinhas protegidas (AMP) da costa central de São Paulo. Quatro campanhas de amostragem foram feitas entre 2013 e 2015 em 10 sítios localizados nos Parques Estaduais Marinho da Laje de Santos e Xixová-Japuí (PEMLS e PEXJ, respectivamente), e Área de Proteção Ambiental Litoral Centro (APAMLC). As amostras foram analisadas quanto granulometria, carbono orgânico total, CaCO3, metais (Al, Fe, Hg, Cd, Co, Cr, Cu, Ni, Pb e Zn) e hidrocarbonetos alifáticos(AHs) e policíclicos aromáticos (PAHs). Em geral os sedimentos foram arenosos (exceto aqueles de APAMLC, que foram lamosos) e com quantidades variáveis de COT, MO e CaCO3. A maioria das amostras apresentaram baixas concentrações de metais de acordo com índices geoquímicos (Igeo e fatores de enriquecimento - FE). Baixa contaminação por hidrocarbonetos foi encontrada e em APAMLC os sedimentos apresentaram as maiores concentrações de AHs de origem biogênica e PAHs de pirogênicos. Nos sedimentos de APAMLC e PEMLS, os níveis de metais podem ser considerados como valores de referência. Já em PEXJ, os dados indicaram baixa qualidade de sedimentos, possivelmente devido às fontes antrópicas

    Tunnel field-effect transistors for sensitive terahertz detection

    Get PDF
    The rectification of electromagnetic waves to direct currents is a crucial process for energy harvesting, beyond-5G wireless communications, ultra-fast science, and observational astronomy. As the radiation frequency is raised to the sub-terahertz (THz) domain, ac-to-dc conversion by conventional electronics becomes challenging and requires alternative rectification protocols. Here we address this challenge by tunnel field-effect transistors made of bilayer graphene (BLG). Taking advantage of BLG's electrically tunable band structure, we create a lateral tunnel junction and couple it to an antenna exposed to THz radiation. The incoming radiation is then down-converted by the tunnel junction nonlinearity, resulting in high-responsivity (> 4 kV/W) and low-noise (0.2 pW/Hz\sqrt{\mathrm{Hz}}}) detection. We demonstrate how switching from intraband Ohmic to interband tunneling regime can raise detectors' responsivity by few orders of magnitude, in agreement with the developed theory. Our work demonstrates a potential application of tunnel transistors for THz detection and reveals BLG as a promising platform therefor

    Individual based model links thermodynamics, chemical speciation and environmental conditions to microbial growth

    Get PDF
    Individual based Models (IbM) must transition from research tools to engineering tools. To make the transition we must aspire to develop large, three dimensional and physically and biologically credible models. Biological credibility can be promoted by grounding, as far as possible, the biology in thermodynamics. Thermodynamic principles are known to have predictive power in microbial ecology. However, this in turn requires a model that incorporates pH and chemical speciation. Physical credibility implies plausible mechanics and a connection with the wider environment. Here, we propose a step toward that ideal by presenting an individual based model connecting thermodynamics, pH and chemical speciation and environmental conditions to microbial growth for 5·105 individuals. We have showcased the model in two scenarios: a two functional group nitrification model and a three functional group anaerobic community. In the former, pH and connection to the environment had an important effect on the outcomes simulated. Whilst in the latter pH was less important but the spatial arrangements and community productivity (that is, methane production) were highly dependent on thermodynamic and reactor coupling. We conclude that if IbM are to attain their potential as tools to evaluate the emergent properties of engineered biological systems it will be necessary to combine the chemical, physical, mechanical and biological along the lines we have proposed. We have still fallen short of our ideals because we cannot (yet) calculate specific uptake rates and must develop the capacity for longer runs in larger models. However, we believe such advances are attainable. Ideally in a common, fast and modular platform. For future innovations in IbM will only be of use if they can be coupled with all the previous advances

    Excitation's lifetime extracted from electron-photon (EELS-CL) nanosecond-scale temporal coincidences

    Full text link
    Electron-photon temporal correlations in electron energy loss (EELS) and cathodoluminescence (CL) spectroscopies have recently been used to measure the relative quantum efficiency of materials. This combined spectroscopy, named Cathodoluminescence excitation spectroscopy (CLE), allows the identification of excitation and decay channels which are hidden in average measurements. Here, we demonstrate that CLE can also be used to measure excitation's decay time. In addition, the decay time as a function of the excitation energy is accessed, as the energy for each electron-photon pair is probed. We used two well-known insulating materials to characterize this technique, nanodiamonds with \textit{NV0^0} defect emission and h-BN with a \textit{4.1 eV} defect emission. Both also exhibit marked transition radiations, whose extremely short decay times can be used to characterize the instrumental response function. It is found to be typically 2 ns, in agreement with the expected limit of the EELS detector temporal resolution. The measured lifetimes of \textit{NV0^0} centers in diamond nanoparticles (20 to 40 ns) and \textit{4.1 eV} defect in h-BN flakes (<< 2 ns) matches those reported for those materials previously

    Assessing the sediment quality of the Laje de Santos marine state park and other marine protected areas of the central coast of São Paulo (Brazil)

    Get PDF
    Este estudo analisou a qualidade dos sedimentos de três Áreas Marinhas Protegidas (AMP) situadas na porção central do litoral paulista (Parque Estadual Marinho da Laje de Santos - PEMLS; Parque Estadual Xixová-Japuí- PEXJ; Área de Proteção Ambiental Marinha do Litoral Centro - APAMLC). Quatro campanhas de coleta foram organizadas (Setembro/Outobro-2013; Janeiro-2014; Julho-2014; Janeiro-2015). Amostras de sedimento foram coletadas em 10 pontos ao longo das 3 AMP. As amostras foram analisadas para granulometria, carbono orgânico total, CaCO3, metais, hidrocarbonetos alifáticos e policíclico aromáticos, e toxicidade de sedimento integral e interface sedimento-água. Análise de Componentes Principais foi utilizada na integração dos dados. A maioria das amostras exibiu baixa contaminação, exceto a amostra de P2 (APAMLC) onde níveis moderados de contaminantes foram detectados. Sedimentos de P7 e P9 (PEMLS) eventualmente apresentaram sinais de hidrocarbonetos de petróleo. As demais amostras não apresentaram contaminação relevante, mas tiveram toxicidades variáveis, especialmente os sedimentos predominantemente bioclásticos. A PCA indicou forte contribuição das propriedades do sedimento, principalmente CaCO3 e amônia, na geração da toxicidade, indicando que fatores naturais e/ou antrópicos podem estar induzindo a toxicidade nas AMP estudadas.In this study, the quality of sediments from three Marine Protected Areas (MPAs) located on the coast of São Paulo (Laje de Santos Marine State Park - PEMLS; Xixova-Japui State Park - XJSP; and Central Coast Marine Protection Area - APAMLC) was assessed. Four sampling surveys were conducted (September/October 2013; January 2014; July 2014; January 2015). Sediment samples were collected at10 sites, distributed along the 3 MPAs. Samples were analyzed for sediment texture, total organic carbon, CaCO3, metals, aliphatic and polycyclic aromatic hydrocarbons, and for whole-sediment and sediment-water interface toxicities. Principal component analysis (PCA) was used to integrate data. Most of the sediments exhibited low concentrations of chemicals, with the exception of those from P2 (APAMLC) where moderate levels of contaminants were detected. Sediments from P7 and P9 (PEMLS) occasionally showed signs of petroleum hydrocarbons. The other sediments showed no relevant contamination but presented variable toxicity, especially those of bioclastic composition. The PCA indicated a contribution of the sediment properties to the toxicities, especially the CaCO3. In bioclastic sediments, toxicity might be due to physical causes by or any indirect factor such as the presence of ammonia. It was concluded that both natural and anthropic factors are causing toxicity in sediments from the MPAs studied
    corecore