150 research outputs found

    Adjuvant Chemotherapy Versus Adjuvant Concurrent Chemoradiotherapy After Radical Surgery for Early-Stage Cervical Cancer: A Randomized, Non-Inferiority, Multicenter Trial

    Get PDF
    We conducted a prospective study to assess the non-inferiority of adjuvant chemotherapy alone versus adjuvant concurrent chemoradiotherapy (CCRT) as an alternative strategy for patients with early-stage (FIGO 2009 stage IB-IIA) cervical cancer having risk factors after surgery. The condition was assessed in terms of prognosis, adverse effects, and quality of life. This randomized trial involved nine centers across China. Eligible patients were randomized to receive adjuvant chemotherapy or CCRT after surgery. The primary end-point was progression-free survival (PFS). From December 2012 to December 2014, 337 patients were subjected to randomization. Final analysis included 329 patients, including 165 in the adjuvant chemotherapy group and 164 in the adjuvant CCRT group. The median follow-up was 72.1 months. The three-year PFS rates were both 91.9%, and the five-year OS was 90.6% versus 90.0% in adjuvant chemotherapy and CCRT groups, respectively. No significant differences were observed in the PFS or OS between groups. The adjusted HR for PFS was 0.854 (95% confidence interval 0.415-1.757; P = 0.667) favoring adjuvant chemotherapy, excluding the predefined non-inferiority boundary of 1.9. The chemotherapy group showed a tendency toward good quality of life. In comparison with post-operative adjuvant CCRT, adjuvant chemotherapy treatment showed non-inferior efficacy in patients with early-stage cervical cancer having pathological risk factors. Adjuvant chemotherapy alone is a favorable alternative post-operative treatment

    LHCb upgrade software and computing : technical design report

    Get PDF
    This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis

    Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era

    Get PDF
    The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034 cm−2s−1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b → sl+l−and b → dl+l− transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 → μ+μ−)/B(Bs → μ+μ−). Probing charm CP violation at the 10−5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier

    Observation of the decay Λb0Λc+ppπ\Lambda_b^0 \to \Lambda_c^+ p \overline{p} \pi^-

    No full text
    corecore