34 research outputs found

    Nanoexposure, Unusual Diseases, and New Health and Safety Concerns

    Get PDF
    Accumulating studies in animals have shown that nanoparticles could cause unusual rapid lung injury and extrapulmonary toxicity. Whether exposure of workers to nanoparticles may result in some unexpected damage as seen in animals is still a big concern. We previously reported findings regarding a group of patients exposed to nanoparticles and presenting with an unusual disease. The reported disease was characterized by bilateral chest fluid, pulmonary fibrosis, pleural granuloma, and multiorgan damage and was highly associated with the nanoparticle exposure. To strengthen this association, further information on exposure and the disease was collected and discussed. Our studies show that some kinds of nanomaterials, such as silica nanoparticles and nanosilicates, may be very toxic and even fatal to occupational workers exposed to them without any effective personal protective equipment. More research and collaborative efforts on nanosafety are required in order to prevent and minimize the potential hazards of nanomaterials to humans and the environment

    Developing a predictive nomogram and web-based survival calculator for locally advanced hypopharyngeal cancer: A propensity score-adjusted, population-based study

    Get PDF
    Understanding the clinical features and accurately predicting the prognosis of patients with locally advanced hypopharyngeal squamous cell carcinoma (LA-HPSCC) is important for patient centered decision-making. This study aimed to create a multi-factor nomogram predictive model and a web-based calculator to predict post-therapy survival for patients with LA-HPSCC. A retrospective cohort study analyzing Surveillance, Epidemiology, and End Results (SEER) database from 2004 to 2015 for patients diagnosed with LA-HPSCC was conducted and randomly divided into a training and a validation group (7:3 ratio). The external validation cohort included 276 patients from Sichuan Cancer Hospital, China. The Least Absolute Shrinkage and Selection Operator (LASSO)-Cox regression analysis was used to identify independent factors associated with overall survival (OS) and cancer-specific survival (CSS), and nomogram models and web-based survival calculators were constructed. Propensity score matching (PSM) was used to compare survival with different treatment options. A total of 2526 patients were included in the prognostic model. The median OS and CSS for the entire cohort were 20 (18.6-21.3) months and 24 (21.7-26.2) months, respectively. Nomogram models integrating the seven factors demonstrated high predictive accuracy for 3-year and 5-year survival. PSM found that patients who received surgery-based curative therapy had better OS and CSS than those who received radiotherapy-based treatment (median survival times: 33 months vs 18 months and 40 months vs 22 months, respectively). The nomogram model accurately predicted patient survival from LA-HPSCC. Surgery with adjuvant therapy yielded significantly better survival than definitive radiotherapy. and should be prioritized over definitive radiotherapy

    Congenital bone marrow failure in DNA-PKcs mutant mice associated with deficiencies in DNA repair

    Get PDF
    The nonhomologous end-joining (NHEJ) pathway is essential for radioresistance and lymphocyte-specific V(D)J (variable [diversity] joining) recombination. Defects in NHEJ also impair hematopoietic stem cell (HSC) activity with age but do not affect the initial establishment of HSC reserves. In this paper, we report that, in contrast to deoxyribonucleic acid (DNA)–dependent protein kinase catalytic subunit (DNA-PKcs)–null mice, knockin mice with the DNA-PKcs(3A/3A) allele, which codes for three alanine substitutions at the mouse Thr2605 phosphorylation cluster, die prematurely because of congenital bone marrow failure. Impaired proliferation of DNA-PKcs(3A/3A) HSCs is caused by excessive DNA damage and p53-dependent apoptosis. In addition, increased apoptosis in the intestinal crypt and epidermal hyperpigmentation indicate the presence of elevated genotoxic stress and p53 activation. Analysis of embryonic fibroblasts further reveals that DNA-PKcs(3A/3A) cells are hypersensitive to DNA cross-linking agents and are defective in both homologous recombination and the Fanconi anemia DNA damage response pathways. We conclude that phosphorylation of DNA-PKcs is essential for the normal activation of multiple DNA repair pathways, which in turn is critical for the maintenance of diverse populations of tissue stem cells in mice

    Non-Invasive Detection of Protein Content in Several Types of Plant Feed Materials Using a Hybrid Near Infrared Spectroscopy Model.

    No full text
    Near-infrared spectroscopy combined with chemometrics was applied to construct a hybrid model for the non-invasive detection of protein content in different types of plant feed materials. In total, 829 samples of plant feed materials, which included corn distillers' dried grains with solubles (DDGS), corn germ meal, corn gluten meal, distillers' dried grains (DDG) and rapeseed meal, were collected from markets in China. Based on the different preprocessed spectral data, specific models for each type of plant feed material and a hybrid model for all the materials were built. Performances of specific model and hybrid model constructed with full spectrum (full spectrum model) and selected wavenumbers with VIP (variable importance in the projection) scores value bigger than 1.00 (VIP scores model) were also compared. The best spectral preprocessing method for this study was found to be the standard normal variate transformation combined with the first derivative. For both full spectrum and VIP scores model, the prediction performance of the hybrid model was slightly worse than those of the specific models but was nevertheless satisfactory. Moreover, the VIP scores model obtained generally better performances than corresponding full spectrum model. Wavenumbers around 4500 cm-1, 4664 cm-1 and 4836 cm-1 were found to be the key wavenumbers in modeling protein content in these plant feed materials. The values for the root mean square error of prediction (RMSEP) and the relative prediction deviation (RPD) obtained with the VIP scores hybrid model were 1.05% and 2.53 for corn DDGS, 0.98% and 4.17 for corn germ meal, 0.75% and 6.99 for corn gluten meal, 1.54% and 4.59 for DDG, and 0.90% and 3.33 for rapeseed meal, respectively. The results of this study demonstrate that the protein content in several types of plant feed materials can be determined using a hybrid near-infrared spectroscopy model. And VIP scores method can be used to improve the general predictability of hybrid model

    Cobalt nanoparticles induce lung injury, DNA damage and mutations in mice

    No full text
    Abstract Background We and other groups have demonstrated that exposure to cobalt nanoparticles (Nano-Co) caused oxidative stress and inflammation, which have been shown to be strongly associated with genotoxic and carcinogenic effects. However, few studies have reported Nano-Co-induced genotoxic effects in vivo. Here, we propose that Nano-Co may have high genotoxic effects due to their small size and high surface area, which have high capacity for causing oxidative stress and inflammation. Methods gpt delta transgenic mice were used as our in vivo study model. They were intratracheally instilled with 50 μg per mouse of Nano-Co. At day 1, 3, 7 and 28 after exposure, bronchoalveolar lavage (BAL) was performed and the number of neutrophils, CXCL1/KC level, LDH activity and concentration of total protein in the BAL fluid (BALF) were determined. Mouse lung tissues were collected for H&E staining, and Ki-67, PCNA and γ-H2AX immunohistochemical staining. 8-OHdG level in the genomic DNA of mouse lungs was determined by an OxiSelect™ Oxidative DNA Damage ELISA Kit, and mutant frequency and mutation spectrum in the gpt gene were also determined in mouse lungs at four months after Nano-Co exposure by 6-TG selection, colony PCR, and DNA sequencing. Results Exposure of mice to Nano-Co (50 μg per mouse) resulted in extensive acute lung inflammation and lung injury which were reflected by increased number of neutrophils, CXCL1/KC level, LDH activity and concentration of total protein in the BALF, and infiltration of large amount of neutrophils and macrophages in the alveolar space and interstitial tissues. Increased immunostaining of cell proliferation markers, Ki-67 and PCNA, and the DNA damage marker, γ-H2AX, was also observed in bronchiolar epithelial cells and hyperplastic type II pneumocytes in mouse lungs at day 7 after Nano-Co exposure. At four months after exposure, extensive interstitial fibrosis and proliferation of interstitial cells with inflammatory cells infiltrating the alveolar septa were observed. Moreover, Nano-Co caused increased level of 8-OHdG in genomic DNA of mouse lung tissues. Nano-Co also induced a much higher mutant frequency as compared to controls, and the most common mutation was G:C to T:A transversion, which may be explained by Nano-Co-induced increased formation of 8-OHdG. Conclusion Our study demonstrated that exposure to Nano-Co caused oxidative stress, lung inflammation and injury, and cell proliferation, which further resulted in DNA damage and DNA mutation. These findings have important implications for understanding the potential health effects of nanoparticle exposure

    Mechanisms, Techniques and Devices of Airborne Virus Detection: A Review

    No full text
    Airborne viruses, such as COVID-19, cause pandemics all over the world. Virus-containing particles produced by infected individuals are suspended in the air for extended periods, actually resulting in viral aerosols and the spread of infectious diseases. Aerosol collection and detection devices are essential for limiting the spread of airborne virus diseases. This review provides an overview of the primary mechanisms and enhancement techniques for collecting and detecting airborne viruses. Indoor virus detection strategies for scenarios with varying ventilations are also summarized based on the excellent performance of existing advanced comprehensive devices. This review provides guidance for the development of future aerosol detection devices and aids in the control of airborne transmission diseases, such as COVID-19, influenza and other airborne transmission viruses

    Raw and pretreated spectra for different types of plant feed materials.

    No full text
    <p>(A) Raw and mean spectra of different plant feed materials. Some minor differences were existed between them. (B) SNV with first derivative pretreated mean spectra of different plant feed materials. Their response values at wavenumber around 4500 cm<sup>-1</sup>, 4664 cm<sup>-1</sup> and 4836 cm<sup>-1</sup> were somehow ordered by their mean protein contents.</p
    corecore