28 research outputs found

    MEIS2C and MEIS2D promote tumor progression via Wnt/β-catenin and hippo/YAP signaling in hepatocellular carcinoma

    Full text link
    Abstract Background MEIS2 has been identified as one of the key transcription factors in the gene regulatory network in the development and pathogenesis of human cancers. Our study aims to identify the regulatory mechanisms of MEIS2 in hepatocellular carcinoma (HCC), which could be targeted to develop new therapeutic strategies. Methods The variation of MEIS2 levels were assayed in a cohort of HCC patients. The proliferation, clone-formation, migration, and invasion abilities of HCC cells were measured to analyze the effects of MEIS2C and MEIS2D (MEIS2C/D) knockdown with small hairpin RNAs in vitro and in vivo. Chromatin immunoprecipitation (ChIP) was performed to identify MEIS2 binding site. Immunoprecipitation and immunofluorescence assays were employed to detect proteins regulated by MEIS2. Results The expression of MEIS2C/D was increased in the HCC specimens when compared with the adjacent noncancerous liver (ANL) tissues. Moreover, MEIS2C/D expression negatively correlated with the prognosis of HCC patients. On the other hand, knockdown of MEIS2C/D could inhibit proliferation and diminish migration and invasion of hepatoma cells in vitro and in vivo. Mechanistically, MESI2C activated Wnt/β-catenin pathway in cooperation with Parafibromin (CDC73), while MEIS2D suppressed Hippo pathway by promoting YAP nuclear translocation via miR-1307-3p/LATS1 axis. Notably, CDC73 could directly either interact with MEIS2C/β-catenin or MEIS2D/YAP complex, depending on its tyrosine-phosphorylation status. Conclusions Our studies indicate that MEISC/D promote HCC development via Wnt/β-catenin and Hippo/YAP signaling pathways, highlighting the complex molecular network of MEIS2C/D in HCC pathogenesis. These results suggest that MEISC/D may serve as a potential novel therapeutic target for HCC.https://deepblue.lib.umich.edu/bitstream/2027.42/152244/1/13046_2019_Article_1417.pd

    Design and modelling of a generic compliant mechanism with bi-stability and static balancing

    No full text
    This article presents two new compliant mechanisms that are able to achieve bi-stability and static balancing where the improved motion characteristics and reduced footprint can be obtained. One design is a single-layer symmetrical design, and the other design is a two-layer compact design. Static balancing is accomplished by adjusting the initial slope of the beam embodied in the bistable mechanism. The free-body diagram (FBD) combined with the beam constraint model (BCM) method is employed to capture the nonlinearities in the force-displacement characteristics of the proposed compliant bistable mechanism. Nonlinear Finite element analysis (FEA) is carried out to verify the modelling results

    Secondary Metabolites from Hericium erinaceus and Their Anti-Inflammatory Activities

    No full text
    Hericium erinaceus, a culinary and medicinal mushroom, is widely consumed in Asian countries. Chemical investigation on the fruiting bodies of Hericium erinaceus led to the isolation of one new ergostane-type sterol fatty acid ester, erinarol K (1); and eleven known compounds: 5α,8α -epidioxyergosta-6,22-dien-3β-yl linoleate (2); ethyl linoleate (3); linoleic acid (4); hericene A (5); hericene D (6); hericene E (7); ergosta-4,6,8(14),22-tetraen-3-one (8); hericenone F (9); ergosterol (10); ergosterol peroxide (11); 3β,5α,6α,22E-ergosta-7,22-diene-3,5,6-triol 6-oleate (12). The chemical structures of the compounds were determined by 1D and 2D NMR (nuclear magnetic resonance) spectroscopy, mass spectra, etc. Anti-inflammatory effects of the isolated aromatic compounds (5–7, 9) were evaluated in terms of inhibition of pro-inflammatory mediator (TNF-α, IL-6 and NO) production in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophage cells. The results showed that compounds 5 and 9 exhibited moderate activity against TNF-α (IC50: 78.50 μM and 62.46 μM), IL-6 (IC50: 56.33 μM and 48.50 μM) and NO (IC50: 87.31 μM and 76.16 μM) secretion. These results supply new information about the secondary metabolites of Hericium erinaceus and their anti-inflammatory effects

    Competitive Adsorption: Reducing the Poisoning Effect of Adsorbed Hydroxyl on Ru Single-Atom Site with SnO for Efficient Hydrogen Evolution

    Get PDF
    Ruthenium (Ru) has been theoretically considered a viable alkaline hydrogen evolution reaction electrocatalyst due to its fast water dissociation kinetics. However, its strong affinity to the adsorbed hydroxyl (OHad) blocks the active sites, resulting in unsatisfactory performance during the practical HER process. Here, we first reported a competitive adsorption strategy for the construction of SnO2 nanoparticles doped with Ru single-atoms supported on carbon (Ru SAs-SnO2/C) via atomic galvanic replacement. SnO2 was introduced to regulate the strong interaction between Ru and OHad by the competitive adsorption of OHad between Ru and SnO2, which alleviated the poisoning of Ru sites. As a consequence, the Ru SAs-SnO2/C exhibited a low overpotential at 10 mAcm2 (10 mV) and a low Tafel slope of 25 mVdec1. This approach provides a new avenue to modulate the adsorption strength of active sites and intermediates, which paves the way for the development of highly active electrocatalysts

    Integrative analysis of chromatin accessibility and transcriptome landscapes in the induction of peritoneal fibrosis by high glucose

    No full text
    Abstract Background Peritoneal fibrosis is the prevailing complication induced by prolonged exposure to high glucose in patients undergoing peritoneal dialysis. Methods To elucidate the molecular mechanisms underlying this process, we conducted an integrated analysis of the transcriptome and chromatin accessibility profiles of human peritoneal mesothelial cells (HMrSV5) during high-glucose treatment. Results Our study identified 2775 differentially expressed genes (DEGs) related to high glucose-triggered pathological changes, including 1164 upregulated and 1611 downregulated genes. Genome-wide DEGs and network analysis revealed enrichment in the epithelial–mesenchymal transition (EMT), inflammatory response, hypoxia, and TGF-beta pathways. The enriched genes included VEGFA, HIF-1α, TGF-β1, EGF, TWIST2, and SNAI2. Using ATAC-seq, we identified 942 hyper (higher ATAC-seq signal in high glucose-treated HMrSV5 cells than in control cells) and 714 hypo (lower ATAC-seq signal in high glucose-treated HMrSV5 cells versus control cells) peaks with differential accessibility in high glucose-treated HMrSV5 cells versus controls. These differentially accessible regions were positively correlated (R = 0.934) with the nearest DEGs. These genes were associated with 566 up- and 398 downregulated genes, including SNAI2, TGF-β1, HIF-1α, FGF2, VEGFA, and VEGFC, which are involved in critical pathways identified by transcriptome analysis. Integrated ATAC-seq and RNA-seq analysis also revealed key transcription factors (TFs), such as HIF-1α, ARNTL, ELF1, SMAD3 and XBP1. Importantly, we demonstrated that HIF-1α is involved in the regulation of several key genes associated with EMT and the TGF-beta pathway. Notably, we predicted and experimentally validated that HIF-1α can exacerbate the expression of TGF-β1 in a high glucose-dependent manner, revealing a novel role of HIF-1α in high glucose-induced pathological changes in human peritoneal mesothelial cells (HPMCs). Conclusions In summary, our study provides a comprehensive view of the role of transcriptome deregulation and chromosome accessibility alterations in high glucose-induced pathological fibrotic changes in HPMCs. This analysis identified hub genes, signaling pathways, and key transcription factors involved in peritoneal fibrosis and highlighted the novel glucose-dependent regulation of TGF-β1 by HIF-1α. This integrated approach has offered a deeper understanding of the pathogenesis of peritoneal fibrosis and has indicated potential therapeutic targets for intervention

    Nuclear expression of Twist promotes lymphatic metastasis in esophageal squamous cell carcinoma

    No full text
    China Postdoctoral Science Foundation [20090461447]; National Natural Science Foundation of China [81172288]Twist-1 protein (also called Twist) has been suggested to be involved in tumor epithelial-mesenchymal transition (EMT) related progression, however, the mechanism by which Twist promotes lymph node metastasis is not fully understood. In the present study, we found that nuclear Twist expression is clearly correlated with lymph node (LN) metastasis as determined by immunohistochemistry (IHC). A highly invasive EC109 cell subline, EC109-P, was established by repeated in vitro transwell isolations for the cell model. Immunofluorescence (IF) assay demonstrated that nuclear Twist expression was markedly higher in the highly invasive EC109-P cell line when compared with EC109 and EC9706 cells. Based on our cell model, the function and mechanism by which Twist regulates LN metastasis in ESCC was investigated. The results showed that the overexpression of Twist could significantly increase the invasion and VEGF-C expression of EC9706 cells, whereas the knockdown of Twist expression results in the opposite effects. This finding was further strengthened by the results of the analysis of co-expression of Twist and VEGF-C by IHC in ESCC clinical samples. In summary, our study indicates that nuclear Twist plays an important role in ESCC lymphatic metastasis by increasing the expression of VEGF-C. The combination of Twist and VEGF-C detection could be a reliable prediction of LN metastasis in ESCC

    Xanthotoxin, a novel inducer of platelet formation, promotes thrombocytopoiesis via IL-1R1 and MEK/ERK signaling

    No full text
    Background: Thrombocytopenia is a common hematological disease caused by many factors. It usually complicates critical diseases and increases morbidity and mortality. The treatment of thrombocytopenia remains a great challenge in clinical practice, however, its treatment options are limited. In this study, the active monomer xanthotoxin (XAT) was screened out to explore its medicinal value and provide novel therapeutic strategies for the clinical treatment of thrombocytopenia. Methods: The effects of XAT on megakaryocyte differentiation and maturation were detected by flow cytometry, Giemsa and phalloidin staining. RNA-seq identified differentially expressed genes and enriched pathways. The signaling pathway and transcription factors were verified through WB and immunofluorescence staining. Tg (cd41: eGFP) transgenic zebrafish and mice with thrombocytopenia were used to evaluate the biological activity of XAT on platelet formation and the related hematopoietic organ index in vivo. Results: XAT promoted the differentiation and maturation of Meg-01 cells in vitro. Meanwhile, XAT could stimulate platelet formation in transgenic zebrafish and recover platelet production and function in irradiation-induced thrombocytopenia mice. Further RNA-seq prediction and WB verification revealed that XAT activates the IL-1R1 target and MEK/ERK signaling pathway, and upregulates the expression of transcription factors related to the hematopoietic lineage to promote megakaryocyte differentiation and platelet formation. Conclusion: XAT accelerates megakaryocyte differentiation and maturation to promote platelet production and recovery through triggering IL-1R1 and activating the MEK/ERK signaling pathway, providing a new pharmacotherapy strategy for thrombocytopenia
    corecore