56 research outputs found

    Integrating demography and distribution modeling for the iconic <i>Leontopodium alpinum</i> Colm. in the Romanian Carpathians.

    Get PDF
    Both climate change and human exploitation are major threats to plant life in mountain environments. One species that may be particularly sensitive to both of these stressors is the iconic alpine flower edelweiss (Leontopodium alpinum Colm.). Its populations have declined across Europe due to over-collection for its highly prized flowers. Edelweiss is still subject to harvesting across the Romanian Carpathians, but no study has measured to what extent populations are vulnerable to anthropogenic change.Here, we estimated the effects of climate and human disturbance on the fitness of edelweiss. We combined demographic measurements with predictions of future range distribution under climate change to assess the viability of populations across Romania.We found that per capita and per-area seed number and seed mass were similarly promoted by both favorable environmental conditions, represented by rugged landscapes with relatively cold winters and wet summers, and reduced exposure to harvesting, represented by the distance of plants from hiking trails. Modeling these responses under future climate scenarios suggested a slight increase in per-area fitness. However, we found plant ranges contracted by between 14% and 35% by 2050, with plants pushed into high elevation sites.Synthesis. Both total seed number and seed mass are expected to decline across Romania despite individual edelweiss fitness benefiting from a warmer and wetter climate. More generally, our approach of coupling species distribution models with demographic measurements may better inform conservation strategies of ways to protect alpine life in a changing world

    Forest defoliator outbreaks alter nutrient cycling in northern waters.

    Get PDF
    Insect defoliators alter biogeochemical cycles from land into receiving waters by consuming terrestrial biomass and releasing biolabile frass. Here, we related insect outbreaks to water chemistry across 12 boreal lake catchments over 32-years. We report, on average, 27% lower dissolved organic carbon (DOC) and 112% higher dissolved inorganic nitrogen (DIN) concentrations in lake waters when defoliators covered entire catchments and reduced leaf area. DOC reductions reached 32% when deciduous stands dominated. Within-year changes in DOC from insect outbreaks exceeded 86% of between-year trends across a larger dataset of 266 boreal and north temperate lakes from 1990 to 2016. Similarly, within-year increases in DIN from insect outbreaks exceeded local, between-year changes in DIN by 12-times, on average. As insect defoliator outbreaks occur at least every 5 years across a wider 439,661 km2 boreal ecozone of Ontario, we suggest they are an underappreciated driver of biogeochemical cycles in forest catchments of this region.Natural Environment Research Council (NE/L006561/1) Ontario Centres of Excellence (OCE/27649) Natural Sciences and Engineering Research Council of Canada (NSERC/509182-17

    The jellification of north temperate lakes.

    Get PDF
    Calcium (Ca) concentrations are decreasing in softwater lakes across eastern North America and western Europe. Using long-term contemporary and palaeo-environmental field data, we show that this is precipitating a dramatic change in Canadian lakes: the replacement of previously dominant pelagic herbivores (Ca-rich Daphnia species) by Holopedium glacialis, a jelly-clad, Ca-poor competitor. In some lakes, this transformation is being facilitated by increases in macro-invertebrate predation, both from native (Chaoborus spp.) and introduced (Bythotrephes longimanus) zooplanktivores, to which Holopedium, with its jelly coat, is relatively invulnerable. Greater representation by Holopedium within cladoceran zooplankton communities will reduce nutrient transfer through food webs, given their lower phosphorus content relative to daphniids, and greater absolute abundances may pose long-term problems to water users. The dominance of jelly-clad zooplankton will likely persist while lakewater Ca levels remain low.This work was primarily supported by grants from the Natural Sciences and Engineering Research Council of Canada and funding from the Ontario Ministry of the Environment.This is the accepted manuscript. The final version is available at http://rspb.royalsocietypublishing.org/content/282/1798/20142449

    Opposing Effects of Climate and Permafrost Thaw on CH4 and CO2 Emissions From Northern Lakes

    Get PDF
    Funder: Natural Sciences and Engineering Research CouncilFunder: Northern Scientific Training Program, University of AlbertaFunder: UAlberta North, Vanier Canada Graduate ScholarshipW. Garfield Weston FoundationAbstract: Small, organic‐rich lakes are important sources of methane (CH4) and carbon dioxide (CO2) to the atmosphere, yet the sensitivity of emissions to climate warming is poorly constrained and potentially influenced by permafrost thaw. Here, we monitored emissions from 20 peatland lakes across a 1,600 km permafrost transect in boreal western Canada. Contrary to expectations, we observed a shift from source to sink of CO2 for lakes warmer regions, driven by greater primary productivity associated with greater hydrological connectivity to lakes and nutrient availability in the absence of permafrost. Conversely, an 8‐fold increase in CH4 emissions in warmer regions was associated with water temperature and shifts in microbial communities and dominant anaerobic processes. Our results suggest that the net radiative forcing from altered greenhouse gas emissions of northern peatland lakes this century will be dominated by increasing CH4 emissions and only partially offset by reduced CO2 emissions

    Plant Litter Type Dictates Microbial Communities Responsible for Greenhouse Gas Production in Amended Lake Sediments

    Get PDF
    The microbial communities of lake sediments play key roles in carbon cycling, linking lakes to their surrounding landscapes and to the global climate system as incubators of terrestrial organic matter and emitters of greenhouse gasses, respectively. Here, we amended lake sediments with three different plant leaf litters: a coniferous forest mix, deciduous forest mix, cattails (Typha latifolia) and then examined the bacterial, fungal and methanogen community profiles and abundances. Polyphenols were found to correlate with changes in the bacterial, methanogen, and fungal communities; most notably dominance of fungi over bacteria as polyphenol levels increased with higher abundance of the white rot fungi Phlebia spp. Additionally, we saw a shift in the dominant orders of fermentative bacteria with increasing polyphenol levels, and differences in the dominant methanogen groups, with high CH4 production being more strongly associated with generalist groups of methanogens found at lower polyphenol levels. Our present study provides insights into and basis for future study on how shifting upland and wetland plant communities may influence anaerobic microbial communities and processes in lake sediments, and may alter the fate of terrestrial carbon entering inland waters

    Wind and trophic status explain within and among-lake variability of algal biomass: Variability of phytoplankton biomass

    Get PDF
    Phytoplankton biomass and production regulates key aspects of freshwater ecosystems yet its variability and subsequent predictability is poorly understood. We estimated within‐lake variation in biomass using high‐frequency chlorophyll fluorescence data from 18 globally distributed lakes. We tested how variation in fluorescence at monthly, daily, and hourly scales was related to high‐frequency variability of wind, water temperature, and radiation within lakes as well as productivity and physical attributes among lakes. Within lakes, monthly variation dominated, but combined daily and hourly variation were equivalent to that expressed monthly. Among lakes, biomass variability increased with trophic status while, within‐lake biomass variation increased with increasing variability in wind speed. Our results highlight the benefits of high‐frequency chlorophyll monitoring and suggest that predicted changes associated with climate, as well as ongoing cultural eutrophication, are likely to substantially increase the temporal variability of algal biomass and thus the predictability of the services it provides.Additional co-authors: E de Eyto, H Feuchtmayr, M Honti, V Istvánovics, C G McBride, S R Schmidt, D Seekell, P A Staehr, G Zh

    MASTREE+ : time-series of plant reproductive effort from six continents

    Get PDF
    Significant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long-lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time-series data from across the globe and makes these data freely available to the community. MASTREE+ includes 73,828 georeferenced observations of annual reproduction (e.g. seed and fruit counts) in perennial plant populations worldwide. These observations consist of 5971 population-level time-series from 974 species in 66 countries. The mean and median time-series length is 12.4 and 10 years respectively, and the data set includes 1122 series that extend over at least two decades (≥20 years of observations). For a subset of well-studied species, MASTREE+ includes extensive replication of time-series across geographical and climatic gradients. Here we describe the open-access data set, available as a.csv file, and we introduce an associated web-based app for data exploration. MASTREE+ will provide the basis for improved understanding of the response of long-lived plant reproduction to environmental change. Additionally, MASTREE+ will enable investigation of the ecology and evolution of reproductive strategies in perennial plants, and the role of plant reproduction as a driver of ecosystem dynamics
    corecore