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Forest defoliator outbreaks alter nutrient cycling in
northern waters
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Insect defoliators alter biogeochemical cycles from land into receiving waters by consuming
terrestrial biomass and releasing biolabile frass. Here, we related insect outbreaks to water
chemistry across 12 boreal lake catchments over 32-years. We report, on average, 27% lower
dissolved organic carbon (DOC) and 112% higher dissolved inorganic nitrogen (DIN) con-
centrations in lake waters when defoliators covered entire catchments and reduced leaf area.
DOC reductions reached 32% when deciduous stands dominated. Within-year changes in
DOC from insect outbreaks exceeded 86% of between-year trends across a larger dataset of
266 boreal and north temperate lakes from 1990 to 2016. Similarly, within-year increases in
DIN from insect outbreaks exceeded local, between-year changes in DIN by 12-times, on
average. As insect defoliator outbreaks occur at least every 5 years across a wider 439,661
km?2 boreal ecozone of Ontario, we suggest they are an underappreciated driver of biogeo-
chemical cycles in forest catchments of this region.
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reshwaters are the main conduit for transporting macro-

nutrients, including carbon (C) and nitrogen (N), between

their major reservoirs on land and the oceans!2. Thus, the
nutrient status and subsequent functioning of freshwaters closely
reflect their surrounding catchments’. C and N mostly enter
freshwaters as dissolved fractions after the leaching of dead plant
organic matter (OM) from soils and fresh foliar litter%. In lakes,
dissolved organic carbon (DOC) regulates ecosystem structure
and function”, by affecting light penetration®, thermal stability’,
contaminant toxicity?, and food web nutrition. Dissolved inor-
ganic nitrogen (DIN; nitrates and ammonium) also influences
lake ecosystem structure and function since it is a limiting
nutrient for the growth of plants, algae, and bacteria®, and thus
available energy at the base of aquatic food webs!®. Despite the
importance of C and N fluxes, how they vary in lakes because of
biotic disturbances in their surrounding catchments remains
poorly understood. Previous work has focused on wood-boring
insects, like bark beetles, that kill large numbers of trees and cause
dead OM to accumulate on the landscape!l. These events can
subsequently release large pulses of C and N into downstream
waters owing to both reduced N uptake!?~1> and increased litter
inputs!® from dead trees into some downstream waters!217. By
contrast, defoliator insects consume foliage without killing trees,
and their consequences for nutrient cycling from land into water
remain unknown.

Outbreaks of insect defoliators cause high severity, periodic
disturbances that can alter the quantity!®, quality!®, and timing??
of C and N inputs into lakes from surrounding catchments. In
years without outbreaks, C and N entering lakes often come from
decaying leaf/needle litter and typically peak in quantity during
autumn?!. Insect defoliation can reduce the amount of foliar litter
C and N available for export to lakes through the ingestion of
leaves/needles!$22. For example, widespread outbreaks of invasive
gypsy moths (Lymantria dispar dispar) and forest tent caterpillars
(Malacasoma disstria) can completely defoliate temperate forest
canopies during early summer?3 when their feeding peaks?%.
Defoliators can, however, offset lower N inputs during autumn
leaf senescence by releasing frass onto soils as a by-product of
feeding. Frass is N-rich because insect defoliators are inefficient at
assimilating foliar N2>, N is also readily available in foliage during
insect feeding that occurs before trees resorb foliar N to reduce
losses during leaf senescence?”. For example, frass produced from
oak leaves (Quercus rubra) has lower C:N ratio than the corre-
sponding leaf litter of 20:1 vs 24:1, respectively, and so is poten-
tially more biolabile?®?7. Unlike C and N, there may be little
change in phosphorus (P) cycling from defoliation as it relies more
on atmospheric inputs, wetland flowpaths, and internal recycling
than plant litter fluxes?®. N:P ratios may therefore shift down-
stream, with consequences for lake food webs as P limitation
becomes more prevalent?®. Foliar chemistry, more generally, also
varies among tree species’), so, the species composition of defo-
liated catchments is likely an overriding factor on the biolability
and biogeochemical fate of both litterfall and resulting frass>!.

Here, we report lower DOC and higher DIN concentrations in
northern lake waters during outbreaks of insect defoliators in
surrounding catchments, particularly when containing higher
proportions of deciduous stands. We analyzed 32-years of insect
outbreak surveys and monthly lake water chemistry data from 12
single-lake catchments (18-1045ha in size) across Ontario,
Canada. Using mixed-effects models, we tested the effects of
defoliating insects by explicitly accounting for temporal auto-
correlation in water chemistry and variation among sites because
of disturbance history and landscape characteristics. We focused
on the dominant deciduous and coniferous defoliating insects>?
of boreal and hemiboreal forests33: European gypsy moth, forest
tent caterpillar, spruce budworm (Choristoneura fumiferana), and

jack pine budworm (Choristoneura pinus). We also included two
species that first appeared in our study region between 2008 and
2010: aspen two-leaf tier (Enargia decolor) and Bruce spanworm
(Operophtera bruceata). The larvae of all these species typically
emerge in May and feed until June or late July32. After feeding,
larvae pupate before emerging as adults that deposit eggs—to
overwinter—before dying. Together, these defoliating insects
annually covered 23-times more of our study region than all bark
and wood-boring beetles combined (see Supplementary Fig. 1).
To our knowledge, our study of how insect outbreaks impact
freshwater C and N dynamics is the most extensive spatially,
temporally, and in terms of defoliator species. Previous studies
have focused at most on 1-2 defoliation events, all with single
insect species, making it difficult to extract wider generalities34-38,
Long-term studies are necessary>® to separate within- and
among-year environmental effects that can confound single
defoliation studies. As northern catchments are expected to
experience more insect outbreaks in the near future?%41, our work
highlights the importance of terrestrial disturbances as a control
of aquatic biogeochemical cycling.

Results

Insect outbreaks reduce canopy cover. Using satellite imagery
from 1985 to 2016, we found insect outbreaks were associated
with less forest cover before autumn leaf senescence (Fig. 1). We
generated monthly averages of forest cover in each catchment
from the leaf area index (LAI) using 30 m resolution Landsat
imagery. As expected, if defoliating insects consumed abundant
foliage, LAI across our 12 study catchments was lower by a mean
of 22% (95% confidence interval [CI]: 13-32%) during the
growing season when the percentage of the catchment damaged
increased from 0 to 100% (Fig. 1). The reduction in LAI peaked in
July (mean decrease: 24%; 95% CI: 15-33%), coinciding with peak
insect consumption and frass production. LAI did not differ
between outbreak and non-outbreak years in May when insect
feeding is minimal or in September and October when forests
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Fig. 1 Defoliator outbreaks reduce forest cover. \We calculated the
monthly leaf area index (LAI) across 12 catchments in Ontario, Canada
from 1985 to 2016. For visualization purposes, monthly catchment-level
averages of LAl were grouped into three equal-width bins for the proportion
of the catchment area defoliated and points show the corresponding
mean * SE. However, slopes were estimated to models fitted to non-binned
data with N =384 per month (Supplementary Table 2). The mean value of
each bin is displayed with the corresponding range in parentheses. The
shaded area is the typical senescence period for the southern boreal forest.
Upper arrows illustrate general life stages of phytophagous insects while
lower arrows show leaf phenology. Asterisks (*) denote a statistically
significant effect of the percentage of catchment damaged on LAl within a
given month calculated using estimated marginal means (see
Supplementary Table 2). Conditional Rf =0.81.
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Fig. 2 Less dissolved organic carbon (DOC) and more dissolved organic
nitrogen (DIN) in lake water during defoliator outbreaks. Mean (+SE) (a)
monthly DOC and (b) DIN concentration averaged across 12 lakes from
1985 to 2016. For visualization purposes, monthly catchment-level averages
of DOC and DIN were grouped into three equal-width bins for the percent
catchment area defoliated and points show the corresponding mean + SE.
However, slopes were estimated to models fitted to non-binned data with
N =289-340 and 270-320 per month for DOC and DIN, respectively
(Supplementary Table 2). The mean value of each bin is displayed with the
corresponding range in parentheses. Shaded area is the typical period of
leaf senescence for the southern boreal forests. Upper arrows illustrate the
general life stages of phytophagous insects while lower arrows show leaf
senescence. Asterisks (*) denote a statistically significant effect of the
percentage of catchment damaged on either DOC or DIN within a given
month calculated using estimated marginal means (see Supplementary
Table 2). Conditional Rf =0.63 and 0.64 in a and b, respectively.

begin senescing (mean 95% CI for differences in LAI: —21 to 20%
for May, September and October). When we compared forest
cover across months with no outbreaks, LAI peaked in July and
exceeded June and August values (95% CI for difference: 3-7%
and 7-12%, respectively). There was no such July peak in years
where outbreaks covered most of the catchment (95% CI: —1 to
13% and —9 to 5%, respectively, for a mean of 99% damage;
Fig. 1).

Biogeochemical consequences of insect outbreaks. Lake chem-
istry changed during insect outbreaks consistent with defoliation
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Fig. 3 Dissolved organic carbon (DOC) declines more strongly with insect
defoliation in catchments with a greater proportion of deciduous stands.
For visualization purposes, lines are mean DOC averaged across months at
the 25th, 50th, and 75th percentiles for the proportion of pure deciduous
forest stands in a catchment. Points (£SE) were extracted at zero and for
the three equal-width bins describing the observed proportion of defoliated
catchment area (0.15, 0.45, and 0.99; n= 48 to 1800) reported in Figs. 1
and 2. The dashed line denotes a non-statistically significant trend at low
proportions of deciduous stands. Conditional Rf =0.63.

that reduces available C while increasing N inputs. When we
accounted for temporal autocorrelation and variation across
lakes, DOC concentrations were lower by a mean (95% CI) of
0.71 (0.19-1.23) mgL~! from July onwards in years with the
greatest level of insect damage, as might arise if labile frass pro-
duced by defoliators primed soil microbial activity and made less
C available to be leached (Fig. 2a). On a relative basis, DOC was
reduced by 19-24% during this period as compared with no
insect disturbance. This reduction in DOC was minimized to 0.32
(0.09-0.56) mg L~! when only about half (45%, Fig. 2a) of the
catchment was disturbed. During years with no disturbance, lake
water DOC concentrations increased from May through July and
remained elevated until October (95% CI for the difference
between October and both May and July: 0.15 and 0.50 and —0.18
to 0.13 mg L1, respectively; Fig. 2a). This trend was absent once
outbreaks affected >47% of the catchment area, with DOC
remaining consistent throughout the year (95% CI for the dif-
ference between October and both May and July: —0.004 to 0.42
and —0.23 to 0.17 mg L~1, respectively; Fig. 2a).

DIN showed the opposite pattern to DOC. We found that,
when the entire catchment was disturbed by insects, DIN
concentrations increased by a mean (95% CI) of 0.03
(0.01-0.04) mgL~! in July when insect feeding and frass
deposition typically peak (Fig. 2b). This increase in DIN during
outbreak years persisted throughout the remaining ice-free season
with a mean (95% CI) increase of 0.03 (0.01-0.04) mg L=1. On a
relative basis, DIN concentrations peaked in October by 134%
when the percent of the area in a catchment disturbed by insects
increased from 0 to 100% (Fig. 2b). N:P ratios, therefore,
increased with insect outbreaks, as there were no corresponding
changes in total P (Supplementary Fig. 2). Irrespective of insect
defoliation, DIN concentrations always sharply decreased from
May to July before increasing from September to October
(Fig. 2b).

The effects of defoliator outbreaks on lake chemistry partly
depended on surrounding forest composition. DOC concentra-
tions decreased more during outbreaks in catchments with more
deciduous stands (Fig. 3). At the median proportion of deciduous
tree cover observed in our catchments (=0.26), an increase in the
percent of the catchment damaged by insects from 0 to 100%
decreased lake DOC concentrations by 0.48 (95% CI:
0.08-0.88) mg L~1. At the upper quartile of deciduous tree cover
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Fig. 4 Defoliator outbreaks offset increases in lake water dissolved
organic carbon (DOC) concentrations observed across northern waters.
Bars represent the number of lakes that showed either an increase (black;
n=247) or decrease (open; n=15) in DOC between 1990 and 201644,
Four lakes showed no change in DOC and are omitted from the plot. The
vertical dashed line is the mean decline in DOC averaged across ice-free
months estimated during defoliator outbreaks over the same study period
from 12 catchments in Ontario, Canada. The shaded area represents the
95% ClI for the change in DOC calculated via the emmeans package.

(=0.60), this reduction reached 1.13 (95% CI: 0.28-2.00) mg L~!
over the range of insect damage—a 32% reduction on a relative
basis (i.e., black line, Fig. 3). The proportion of coniferous stands
did not change the effects of defoliators on DOC concentrations,
and defoliator effects on DIN or LAI did not vary with forest
composition (Supplementary Table 1).

Effects of insect outbreaks exceed broader between-year trends.
The magnitude of changes in lake water chemistry associated with
insect outbreaks can have broader biogeochemical consequences.
Over the 32-year period of this study, average annual DOC
concentrations have increased in the study lakes while DIN
concentrations have decreased (Supplementary Fig. 3). These
trends are part of broader, widely reported patterns across the
boreal and north temperate regions associated with recovery from
acidification and anthropogenic influences*?>43. To contextualize
the impact of defoliators relative to these inter-annual trends, we
compared the change in within-year DOC concentrations from
complete catchment defoliation to between-year changes in DOC.
Between-year changes were calculated from 266 boreal and north
temperate lakes that have been relatively undisturbed between
1990 and 2016*4. We similarly compared within-year changes in
DIN concentrations from defoliation to between-year trends, but
only in our 12 study lakes because DIN was not measured in the
broader spatial survey. For both these analyses, we estimated the
mean annual change in DOC and DIN using our existing sta-
tistical models because only annual values were available from the
larger 266-lake data set. We found defoliator outbreaks over the
same years as in the wider data set (1990-2016) reduced annual
ice-free mean DOC concentrations by a mean (95% CI) of 0.16
(0.01-0.32) mg L~1, exceeding 85% of observations in the 266-
lake data set on an absolute basis (Fig. 4, dashed line). This
decrease exceeded the mean absolute trend in DOC across the
266-lake data set (0.08 mgL~! yr~1) by two times. By contrast,
we found defoliator outbreaks increased annual DIN concentra-
tions by a mean (95% CI) of 0.012 (0.001-0.021) mg L~1. This
increase exceeded all annual trends observed in our 12-lake data
set over the same study period (1985-2016) and was 12-times
greater than the mean absolute annual change in those lakes
(Supplementary Fig. 3).

Insect outbreaks are also a persistent and pervasive disturbance
of catchments across this broader landscape, suggesting their
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Fig. 5 Half of all surveyed lake catchments in Ontario, Canada experience
defoliator outbreaks at least every 5 years. a Bars are the number of
catchments with lakes >5 ha where insect defoliator outbreaks occurred
between 1 and >15 times from 1990 and 2016 (n = 48,286). The dashed
line is the median number of outbreaks per catchment across the 22-year
interval. b Cumulative proportion of catchments with at least one insect
outbreak between 1990 and 2016 (n = 60,430). Outbreaks were defined
where >50% of the catchment area was defoliated by aerial observation.

strong effects on biogeochemical trends (e.g., Fig. 4) are
ubiquitous. We counted the number of years where >50% of
the land area was defoliated for 60,430 catchments that
encompassed all lakes >5ha within the 439,661 km? area of
Ontario surveyed for insect outbreaks (Supplementary Fig. 4).
Over the same 22-year period as the broader biogeochemical data
set (1990-2016), individual lake catchments experienced a
median of four defoliator outbreak events (Fig. 5a). Furthermore,
within the 22 years, we found that 80% of all catchments had at
least one defoliator outbreak (Fig. 5b).

Discussion

Here we found that insect defoliator outbreaks were associated
with consistent, frequent, and widespread changes in lake DOC
and DIN concentrations that can mask background trends in
aquatic nutrient cycling. We attributed these effects to the loss
and composition of forest cover in surrounding catchments that
we detected using remote sensing. The spatial and temporal
breadth of our study, the most extensive to our knowledge, now
advances our understanding of how defoliator outbreaks alter
aquatic nutrient cycling. Most of our understanding of how
defoliators impact receiving waters comes from studies of single
defoliation events34-37:4546_ However, these studies are too short-
lived to compare the magnitude of outbreak effects with broader
temporal trends, such as increased DOC concentrations, as we do
here. By analyzing long time series while accounting for back-
ground inter-annual trends and seasonality, our results reveal
much larger effects of forest defoliators on aquatic biogeochem-
istry than previously appreciated.

During outbreaks, defoliators consume foliage and convert it to
highly biolabile frass26, which alters both C and N cycling. These
reductions in forest leaf area were greatest during mid-summer
(June to August) when insect feeding peaks?%. C is then rapidly
incorporated from frass into microbial biomass and can be
respired to the atmosphere rather than accumulated in soils47-48,
Furthermore, any highly biolabile C from frass that enters adja-
cent waters may be rapidly assimilated by the aquatic microbial
community*?, which will further reduce lake water DOC con-
centrations. Less C also accumulates as foliar litter because fewer
leaves/needles are shed during autumn senescence>’. Conversely,
defoliators increased lake DIN concentrations through their
inefficient assimilation of foliar N and subsequent release of
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soluble N-rich frass®!. Although previous studies have shown that
the addition of N-rich frass to forest soils increases soil
nitrification3®2 and eventual uptake by recovering trees*’, N
leaching into aquatic ecosystems still occurs?®. Given that
northern lakes are often N-limited>3, even small additions of N
will result in proportionally large increases in available N con-
centrations that can promote the productivity of aquatic food
webs?®. The lack of an effect of insect outbreaks on lake P con-
centrations is likely owing to atmospheric deposition and wetland
export being the primary sources of P in our system rather than
allochthonous inputs from forests28.

Catchment tree cover, more specifically the types of foliage
available to convert to frass, further dictated biogeochemical
responses. Deciduous leaves are more biolabile than coniferous
needles because of their higher C:N ratio, lower lignin:N ratio,
and lower tannin concentration®®>>. Increasing deciduous tree
cover will therefore increase the biolability of frass and increase
the incorporation of C into the soil and aquatic microbial com-
munities. This process explains why we found lower DOC con-
centrations in downstream waters after defoliator outbreaks in
areas with a higher proportion of purely deciduous stands. The
lack of a significant interaction in our LAT analysis between tree
cover type and catchment damage further supports our inter-
pretation that the effects of defoliators arise from the processing
of leaves/needles rather than vegetation consumption. In other
words, defoliators collectively did not discriminate between forest
types when causing damage, but the biogeochemical con-
sequences depended on the foliar type. For DIN, defoliators
assimilate so little N from leaves/needles?’, the resulting frass will
likely always be high in N regardless of the differences in foliar N
concentrations between deciduous and coniferous trees. However,
as elevated CO, levels reduce leaf nutrient content®®, frass pro-
duced from insect outbreaks may become less nutrient-rich.

Our results contrast those from outbreaks of wood-boring
insects that cause up to 85% of trees to die>’. For example, the
large amount of dead forest biomass produced by bark beetle
outbreaks in the western USA, combined with the increased soil
runoff resulting from less canopy cover!216°7, releases a pulse of
OM into the surrounding environment®$. Consequently, down-
stream DOC concentrations have been found to increase by 40%
after bark beetle outbreaks!'®. Although defoliating and wood-
boring insects can both increase N concentrations in downstream
waters!2-1°, these increases arise through different mechanisms
between the two insect types. Relative to defoliators, wood borers
release frass in lower quantities®® and with lower C and N
concentrations®, because their food source is less nutrient-rich
than foliage®!. Wood borers are also more efficient assimilators of
N because they host N-fixing gut bacteria®, leaving their frass
much less biolabile. Instead, more N is available to be leached
from forests impacted by wood borers because the associated tree
dieback reduces N uptake!? and increases catchment N miner-
alization by adding large amounts of OM to soils®>. When bark
beetles do not cause tree mortality, the increase in downstream
DIN can be weak or negligible compared with the effects of
defoliators observed herel”.

Changes to terrestrial C and N inputs to lakes because of insect
outbreaks have the potential to alter food web structure and
composition. Lakes in our study region remain stratified until late
autumn®, during which algae continue to uptake nutrients®>:60
and respond to changes in overlying water quality associated with
DOC inputs. During severe insect outbreaks, algal productivity in
lakes may therefore increase in late autumn due to elevated
transfer of N from forests via frass and less light attenuation by
DOC from reduced litterfall inputs. Conversely, insect outbreaks
could promote heterotrophic productivity by shifting nutrient
limitations. The productivity of both algae and heterotrophic

bacteria in northern lakes is typically limited by P, but light-, N-,
and N/P co-limitation can also occur®1%>3, As DIN concentra-
tions increase during outbreak years and total P concentrations
remain unchanged (Supplementary Fig. 2), lake N:P ratios will
increase and basal community composition may shift towards
heterotrophic bacteria that are better competitors for limited P67,
Ongoing climate change and rising CO, concentrations will
further increase terrestrial OM export to lakes by promoting soil
runoff® and forest growth®, respectively. These increases in
terrestrial OM and the associated accumulation of DOC”° should
also promote heterotrophic growth®® in the absence of insects.
Future studies should monitor how the competitive balance
between algae and bacteria shifts during insect outbreaks to
determine which groups are favored by corresponding changes in
nutrient cycling.

Our results have at least two implications across the wider
region given ongoing global change. First, the reduction in lit-
terfall inputs to lakes due to insects should provide a within-year
pause in DOC accumulation that enables higher whole-lake
productivity as more light and nutrients are available for algal
uptake. The northward migration of deciduous trees associated
with climate warming’! should enhance these effects by
increasing the amount of biolabile leaf litter. Second, the large
range we found in the frequency of insect outbreaks may promote
heterogeneity in catchment biogeochemistry across the
landscape’2. Defoliation leads to a loss of nutrients from catch-
ments by transferring OM from forests to lakes®”, ultimately
shifting the nutrient balance of C and N in lakes. More frequently
defoliated catchments may therefore experience a phase shift in
lake biogeochemistry relative to catchments with less-frequent
outbreaks. This divergence stands to be enhanced by climate
change. Forests in the study region also face an increased risk of
defoliator outbreaks”> owing to the range expansion and
increased population growth of insects associated with climate
change’4. Warmer temperatures may also disrupt the relationship
between trees and insects (e.g., phenology, plant defense), which
will shift insects to areas more favorable to outbreaks’4. Together,
the magnitude of change in lake biogeochemistry and the varia-
tion in outbreak frequency suggest that global C and N budgets
and models should now consider the effects of insect outbreaks
on lake biogeochemistry across spatial and temporal scales. More
generally, our results demonstrate how tracing landscape nutrient
cycles requires a better understanding of the potential connec-
tions between terrestrial and aquatic ecosystems.

Methods

Study sites. We focused on 12 lakes across the Algoma, Greater Sudbury,
Muskoka, Temiskaming regions of ON, Canada, that have been continually
monitored between 1985 and 2016. (Supplementary Table 3). All our study lakes
are thermally stratify except for Wishart Lake. Lake waters were nutrient-poor,
with total phosphorus concentrations between 3.1 and 6.0 ug L~! and N:P ratios
between 32 and 104 measured via monthly surface grabs at the point of maximum
depth. These low concentrations should make the lakes relatively dependent on
terrestrial resource inputs’>.

Our study catchments were located across the Ontario Shield ecozone that
spans boreal and hemiboreal forests>3. Vegetation was consequently characterized
by a mix of coniferous and deciduous tree stands, including eastern white pine
(Pinus strobus), paper birch (Betula papyrifera), red maple (Acer rubrum), red pine
(Pinus resinosa), sugar maple (Acer saccharum), and trembling aspen (Populus
tremuloides). We defined the surrounding land that fed each lake (i.e., catchment)
using SAGA GIS v.6.3.07°. A 30 m digital elevation model (DEM) obtained from
the Ontario Ministry of Natural Resources and Forestry”’ was pre-processed by
filling in sinks’® before generating a flow accumulation model assuming
unidirectional water flow. When the catchments of our 12 study lakes contained
those of smaller upstream lakes, we removed the latter to ensure each catchment
was draining only one lake.

Insect monitoring. We used long-term data on the extent of insect damage across
Ontario collected by Natural Resources Canada—Canadian Forest Service (CFS)
and the Ontario Ministry of Natural Resources and Forestry (OMNRF). Annually
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since the 1940s, the CFS and OMNREF have conducted aerial flyovers of most of
Ontario (total area 439,661 km?), spanning between 44.3 and 52.4° latitude (Sup-
plementary Fig. 4). This area represents two-thirds of the Ontario Shield ecozone
(total area 653,368 km?). Flyovers occurred immediately after the peak of defo-
liation events, typically in late July’®. Trained observers in the aircraft mapped the
extent and severity of any insect activity. Flight lines have varied over time but were
typically 6-10 km apart, at 170 km hr~! and at a height of 360-600 m above
ground level”?. Insect outbreaks were considered aerially mappable when moderate
to severe defoliation was observed, defined by the absence of at least 25% of foliage
cover’?. As 90% of disturbance events were classified as moderate-severe in our
data set, there was effectively no variation in damage severity. We, therefore, cal-
culated the percent of each study catchment that was damaged by insects to
quantify insect disturbance in subsequent analyses. Our analysis focused on surveys
from 1985 onward to coincide with the available lake chemistry data. Using the sf
package v.0.9.8%0 in R v.4.1.081, we clipped polygons of annual insect damage to the
catchment boundaries of each lake.

To determine the spatial and temporal extent of insect outbreaks across
Ontario, more generally, we quantified the number of catchments in each year
where outbreaks of defoliating insect species covered >50% of the catchment area.
We selected 50% as a threshold to limit our analysis to only larger-scale outbreaks
thereby ensuring small events within the catchment were not overinflating our
estimates of spatial extent. We used catchments delineated by the OMNREF for all
lakes >5 ha®? that were within the area surveyed for insects (Supplementary Fig. 4).
The proportion of each catchment that was damaged was calculated as described
above but we included all defoliating insect species surveyed, not just the species
present in our original 12 study catchments (Supplementary Table 4). When
outbreak polygons overlapped (i.e., an outbreak of multiple species within a single
year), we combined overlapping sections to ensure the damaged area within the
catchment was not overinflated by counting polygons twice.

Forest cover during insect outbreaks. We quantified if outbreaks reduced
vegetation cover in the study catchments using LAI LAI measures forest canopy
cover of deciduous and coniferous trees and is a better predictor of forest cover
compared with the widely used normalized difference vegetation index (NDVI)
because it is less susceptible to over-saturation at higher vegetation density and
greenness®3, However, LAI imagery has a coarser resolution (500 m2) and is only
available after 1999. Therefore, we calculated LAI from Landsat NDVI that is
available over our entire study period and has a finer spatial resolution. We used the
30-m, 16-day interval Landsat composite available from Robinson et al.34 from 1985
to 2016. As insect outbreaks are often localized disturbances over weeks®2, noise in
NDVI during the feeding window can mask underlying signals of defoliation.
Smoothing functions can improve signal-to-noise ratio of NDVI time series by
removing random errors associated with erroneous geo-location, angular variations,
clouds, and atmospheric disturbances®, and have been used to measure the
reductions in NDVI from insect outbreaks®®87. Prior to analysis, we therefore
smoothed the NDVI time series with the Savitsky-Golay algorithm of TIMESAT
v.3.3%8. We then averaged NDVI across all pixels in each catchment for each month.

To convert NDVI values to LAL we fitted a non-linear model between the
Landsat NDVI composite and MODIS LAI (MODIS/006/MCD15A3H) across our
catchments in 2016. We selected 2016 as this was the most recent year with no
insect outbreaks within the prior two years (Supplementary Fig. 5). MODIS LAI
imagery was filtered to exclude cloudy pixels and Landsat imagery was downscaled
from 30 m? to 500 m? by taking the median value®® after removing negative and no
data values. The Landsat imagery was then re-sampled to match the MODIS LAI
pixels before computing average annual values®. LAI and NDVI are non-linearly
related®!, so we fitted a non-linear model using the nlsLM function®? in R. The
resulting model was then used to convert the average monthly NDVI values
described above to LAI (Supplementary Fig. 6).

We also calculated the proportion of each catchment that was covered by
coniferous or deciduous tree cover using the Ontario Land Cover Compilation
v.2.0%3. Land cover was clipped to each catchment and the proportion of total
forested area that was classified as solely deciduous or coniferous was extracted.
Using only forest area ensured we were not including land cover types that insects
would not feed on, e.g., barren, water, grasses. We also excluded mixed and sparse
forests from our analysis because there was no indication of the ratio between
coniferous and deciduous trees within these classifications.

Lake chemistry. We obtained DOC, DIN (nitrates plus ammonium), and TP
concentrations for ice-free months (May to October) for each lake to determine
how they responded to insect outbreaks. Water was collected with surface grabs
near the deepest point of each lake. Grab samples were the most consistent record
of water chemistry across all our study regions, and so used for consistency. When
multiple samples were collected per month, we averaged values. DOC and DIN
were measured with automated colorimetry using standard protocols by the
Ontario Ministry of the Environment for lakes in the Greater Sudbury, Muskoka,
and Temiskaming regions, and by the CFS at the Great Lakes Forestry Centre for
lakes in the Algoma region. In brief, DOC was measured by acidifying samples and
flushing them with nitrogen gas to remove inorganic carbon. Organic carbon was
then oxidized to CO, and measured colorimetrically with a phenolphthalein
indicator®. These methods have remained consistent over the study period to

ensure the resulting DOC and DIN concentrations remain comparable
through time.

To contextualize the within-year changes in lake chemistry from insect
outbreaks, we compared the magnitude of our results with between-year trends in
DOC and DIN. For DOC, we collated data from 266 lakes in the International
Cooperative Programme on Assessment and Monitoring of the Effects of Air
Pollution on Rivers and Lakes (ICP Waters) Programme that monitors water
chemistry across the boreal and north temperate. Catchments monitored by ICP
Waters are selected to avoid disturbance”®, and their broad spatial coverage makes
it ideally suited to track trends in lake chemistry more generally. For each lake, we
calculated the absolute Theil-Sen slope for the inter-annual trend in DOC
concentrations between 1990 and 2016. This approach provides a non-parametric
estimate of the slope of a linear regression line fitted through two variables that is
more robust to outliers. We compared these values to the change (i.e., slope) in
mean annual DOC concentrations associated with complete catchment
disturbance. The effect of insect damage was estimated from mixed-effects models
fitted to our 12 study lakes between 1990 and 2016 (see below for fitting
procedure). For DIN, we calculated between-year trends from our 12 study lakes
because the wider ICP waters data set does not sample DIN. Like for DOC, we
calculated the absolute Theil-Sen slope for the temporal trend in mean annual DIN
in each lake and compared it to the estimated within-year effect of insect
defoliation.

Statistical analyses. To test the impacts of insect outbreaks on LAI, DOC, DIN,
TP, and DIN:TP in the 12 study lakes, we fitted separate mixed-effects models to
each variable using the nlme package v.3.1.152 in R%7. The percent of catchment
disturbed by defoliators was included as a fixed effect. As defoliation is generally
limited to May through July, and terrestrial OM inputs to lakes typically peak in
autumn (Sept/Oct), we also let the effect of disturbance vary with sampling month
(i.e., statistical interaction between months and disturbance). Doing so allowed us
to determine if the effects of insect defoliators were specific to certain months
during the ice-free season. We also tested if the effects of insect defoliation
depended on foliar type by including an interaction between percent damaged and
forest cover (deciduous and coniferous). Finally, we included forest cover as the
main effect in our model. We accounted for variation among sites, such as

those associated with differences in disturbance history, climate, timing of strati-
fication events, and soil type, by including catchment identity as a random effect.
Including catchments as a random effect ensures that our model output represents
the overall effect of insect outbreaks on lake biogeochemistry while incorporating
the variation across catchments. We also accounted for temporal autocorrelation in
each response by estimating a continuous first-order autoregressive (CAR1) error
structure within each lake. The CAR1 structure ensures that the observed trends in
our response variables were not reflecting other seasonal or long-term processes,
e.g., brownification or forest greening. The emmeans package v.1.6.0 in R%8 was
used to calculate 95% Cls and compare between groups.

Data availability

MODIS/006/MCD15A3H is available from Google Earth Engine. Landsat composite data
are available through https://ndvi.ntsg.umt.edu. The International Cooperative
Programme for assessment and monitoring of the effects of air pollution on rivers and
lakes data set (ICP Waters) is available at http://www.icp-waters.no. The lake chemistry,
insect outbreak, and catchment data used in this study have been deposited in the
Zenodo database (https://doi.org/10.5281/zenodo.5517857).

Code availability
The code is provided in the supplementary file entitled Supplementary Code.
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