16 research outputs found

    BSMI AND TAQI POLYMORPHISMS IN VITAMIN D RECEPTOR GENE OF TYPE 2 DIABETES MELLITUS PATIENTS FROM NORTH INDIA

    Get PDF
    ABSTRACTObjective: Polymorphisms in vitamin D receptor (VDR) genes are known to be linked with different metabolic diseases including Type 2 diabetesmellitus (T2DM) also. However, the association of these polymorphisms is not much explored for the Indian population. To determine the prevalenceof BsmI and TaqI polymorphism in VDR gene of T2DM patients from North India.Methods: Blood samples were obtained from 100 well-characterized T2DM patients and 100 healthy controls. Genomic DNA was isolated from bloodsamples and using polymerase chain reaction/restriction fragment length polymorphism based method, the presence of these polymorphisms wasinvestigated in these samples. The data were statistically analyzed using SPSS 21.0 software.Results: For TaqI polymorphism, both the wild type (TT) and heterozygous (TC) genotype showed a significant difference between patients andcontrols (p=0.023 and p<0.001, respectively). Whereas, the frequency of CC genotype was not significantly different among these groups (p=0.506).For BsmI polymorphism also, the frequency of wild type (GG) and heterozygous (GA) genotype was significantly different in patients and controls(p=0.027 and p=0.001), respectively. However, the frequency of AA genotype was not of statistical significance in patients (p=0.071).Conclusions: The mutant alleles of TaqI and BsmI polymorphisms are known to be associated with different metabolic diseases, including diabetestoo. In our study also, there is a significant difference between the frequency of wild type and heterozygous genotype for these polymorphisms. Thissuggests that BsmI and TaqI polymorphisms may be associated with T2DM patients.Keywords: Type 2 diabetes mellitus, Polymorphism, Vitamin D receptor, Patient, Control, Restriction fragment length polymorphism

    CYTB: A HOT SPOT FOR PATHOGENIC MUTATIONS IN MITOCHONDRIAL GENOME OF BREAST CANCER AND OVARIAN CANCER PATIENTS

    Get PDF
    Objective: Out of various cancer types, Breast and ovarian cancers are the most commonly occurring malignancies in women. As per literature, a large number of mutations are reported in various mitochondrial genome encoded subunits of respiratory chain complexes in breast and ovarian cancer patients. However, a very few of them are functionally validated till now. Our study is an attempt to highlight the pathogenic potential of all these reported mutations in breast and ovarian cancer patients.Methods: In order to achieve so, total 109mitochondrial gene mutations of breast cancer and 11 mitochondrial gene mutations of ovarian cancer patients were selected from MITOMAP database as well as various literatures. All these mutations were analyzed using various in silico tools such as MUSCLE, PolyPhen-2, SIFT, Mut Pred, Mu Pro, PANTHER, GOR4 and MUSCLE.Results: As a result of our analysis, 28 out 95 mutations in CytB gene are most pathogenic in the case of breast cancer patients. On the other hand 2 out of 3 mutations of the same gene were predicted to be potentially pathogenic in case of ovarian cancer patients. Mutations in other mitochondrial subunit was also predicted pathogenic but with the low score.Conclusion: Out of different mitochondrial subunits, CytB seems to most important site for mutations in these two groups of patients. Hence, mutations of CytB subunit, which are predicted to be highly pathogenic as per our analysis, should be functionally validated in future.Â

    VITAMIN D RECEPTOR GENE POLYMORPHISMS AND HAPLOTYPE ANALYSIS IN TYPE 2 DIABETES MELLITUS PATIENTS FROM NORTH INDIA

    Get PDF
      Objective: Vitamin D receptor (VDR) mediated Vitamin D signaling is important for expression of insulin gene and glucose transporters, which help in glucose uptake by cells. Current evidence suggests that four common polymorphisms (FokI, BsmI, ApaI, TaqI) of VDR gene are associated with Type 2 diabetes mellitus (T2DM) in different populations. However, there is a scarcity of data on VDR polymorphisms from Indian population.Methods: In the current study, total genomic DNA was isolated from 100 well-characterized T2DM patients and 100 healthy controls. We investigated the prevalence of FokI and ApaI polymorphisms in VDR gene of these patients by polymerase chain reaction-restriction fragment length polymorphism-based method. Taking help of our previous published data on TaqI and BsmI polymorphisms in same patients, the haplotype study was also conducted. Statistical analysis of data was performed using SPSS 21.0 software. Haplotype and linkage disequilibrium analysis was performed by Haploview software.Results: Both the wild (TT) and mutant (CC) genotype of FokI polymorphism showed a significant difference between patients and controls (p<0.001 and p<0.001, respectively). The frequency of mutant allele (C) was also significantly higher in T2DM patients than the controls (p<0.001). In case of ApaI, frequency of wild (GG) and mutant (CC) genotype was significantly different in patients and controls (p=0.017 and p=0.034). As per haplotype analysis, the CACT haplotype was predicted to be of significance in patients and consists of mutant alleles of three polymorphisms (FokI, BsmI, ApaI). Conclusion: Our study supports the association of FokI and ApaI polymorphism in T2DM. The haplotype analysis also indicates that the combinations of mutant allele of different VDR polymorphisms are probably responsible for increased susceptibility of these individuals toward T2DM

    CURRENT TREATMENTS FOR TYPE 2 DIABETES, THEIR SIDE EFFECTS AND POSSIBLE COMPLEMENTARY TREATMENTS

    Get PDF
    Diabetes mellitus is a chronic metabolic disorder in the endocrine system and characterized by a varied and complex pathophysiology. World-wide there is a dramatic increase in the number of patients for type 2 diabetes, and hence it is becoming a serious threat to the health of mankind. Commercially a large number of drugs belonging to different classes such as biguanides, sulfonylureas, meglitinides and thiazolidinediones are available to control and treat the type 2 diabetic patients. However, none of these drugs are known to completely cure the diabetic phenotype. On the other hand, a long term usage of these drugs exhibits several side effects and complications to different organs of the body which ultimately lead to cardiovascular problems, liver disease, kidney disease and weight gain too. Like many other drugs, these anti-diabetic drugs are also known to interfere and interact with other non anti-diabetic drugs, if the patient is taking them for a long time. To combat the side effects of these drugs, complementary treatments may be found as a preventive measure and more promising in the management of disease phenotypes in these patients. As per reports available from a large number of studies, these complementary therapies may include physical exercise, dietary supplements and Nutraceuticals.Â

    Mitochondrial donation: A boon or curse for the treatment of incurable mitochondrial diseases

    No full text
    Mitochondria are present in all human cells and vary in number from a few tens to many thousands. As they generate the majority of a cell's energy supply which power every part of our body, and hence, their number varies in different cells as per the energy requirement of the cell. Mitochondria have their own separate DNA, which carries total 13 genes. All of these 13 genes are involved in energy production. For normal functioning of cells, the mitochondria need to be healthy. Unhealthy mitochondria can cause severe medical disorders known as mitochondrial disease. In case of mitochondrial disease, the most commonly affected organs are the heart, kidney, skeletal muscle, and brain. The diseases related to defects in these organs are quite prevalent in the society. Majority of these mitochondrial diseases are caused by genetic defects (mutations) in the mitochondrial DNA. Unlike nuclear genes, mitochondrial DNA is inherited only from our mother. Mothers can carry abnormal mitochondria and be at risk of passing on the serious disease to their children, even if they themselves show only mild or no symptoms. Due to the complex nature of these diseases, their diagnosis and therapy are very difficult. Hence, till now, only the different methods for management of these diseases are known. However, after understanding the complexity related to the cure of these diseases, alternative methods have been developed to minimize/stop the transfer of mitochondrial diseases from mother to offspring. This latest technique is called mitochondrial replacement or “donation.” In the present review, we are discussing the methodological details and issues related to the technique of mitochondrial donation. Our study is also a step toward raising awareness about mitochondrial diseases and advocating for the legalization of mitochondrial donation, a revolutionary in vitro fertilization technique

    Filtration Improves the Performance of a High-Throughput Screen for Anti-Mycobacterial Compounds

    Get PDF
    The tendency for mycobacteria to aggregate poses a challenge for their use in microplate based assays. Good dispersions have been difficult to achieve in high-throughput screening (HTS) assays used in the search for novel antibacterial drugs to treat tuberculosis and other related diseases. Here we describe a method using filtration to overcome the problem of variability resulting from aggregation of mycobacteria. This method consistently yielded higher reproducibility and lower variability than conventional methods, such as settling under gravity and vortexing

    Steroid receptor phosphorylation: a key modulator of multiple receptor functions

    No full text
    Steroid receptors are hormone-activated transcription factors, the expression and activities of which are also highly dependent upon posttranslational modifications including phosphorylation. The remarkable number of phosphorylation sites in these receptors and the wide variety of kinases participating in their phosphorylation facilitate integration between cell-signaling pathways and steroid receptor action. Sites have been identified in all of the functional domains although the sites are predominantly in the amino-terminal portions of the receptors. Regulation of function is receptor specific, site specific, and often dependent upon activation of a specific cell-signaling pathway. This complexity explains, in part, the early difficulties in identifying roles for phosphorylation in receptor function. With increased availability of phosphorylation site-specific antibodies and better means to measure receptor activities, numerous roles for site-specific phosphorylation have been identified including sensitivity of response to hormone, DNA binding, expression, stability, subcellular localization, and protein-protein interactions that determine the level of regulation of specific target genes. This review summarizes current knowledge regarding receptor phosphorylation and regulation of function. As functional assays become more sophisticated, it is likely that additional roles for phosphorylation in receptor function will be identified.Nancy L. Weigel and Nicole L. Moor

    Iron Is Essential for Neuron Development and Memory Function in Mouse Hippocampus1–3

    No full text
    Iron deficiency (ID) is the most prevalent micronutrient deficiency in the world and it affects neurobehavioral outcome. It is unclear whether the effect of dietary ID on the brain is due to the lack of neuronal iron or from other processes occurring in conjunction with ID (e.g. hypoxia due to anemia). We delineated the role of murine Slc11a2 [divalent metal ion transporter-1 (DMT-1)] in hippocampal neuronal iron uptake during development and memory formation. Camk2a gene promoter-driven cre recombinase (Cre) transgene (Camk2a-Cre) mice were mated with Slc11a2 flox/flox mice to obtain nonanemic Slc11a2hipp/hipp (double mutant, hippocampal neuron-specific knockout of Slc11a2hipp/hipp) mice, the first conditionally targeted model of iron uptake in the brain. Slc11a2hipp/hipp mice had lower hippocampal iron content; altered developmental expression of genes involved in iron homeostasis, energy metabolism, and dendrite morphogenesis; reductions in markers for energy metabolism and glutamatergic neurotransmission on magnetic resonance spectroscopy; and altered pyramidal neuron dendrite morphology in area 1 of Ammon's Horn in the hippocampus. Slc11a2hipp/hipp mice did not reach the criterion on a difficult spatial navigation test but were able to learn a spatial navigation task on an easier version of the Morris water maze (MWM). Learning of the visual cued task did not differ between the Slc11a2WT/WT and Slc11a2hipp/hipp mice. Slc11a2WT/WT mice had upregulation of genes involved in iron uptake and metabolism in response to MWM training, and Slc11a2hipp/hipp mice had differential expression of these genes compared with Slc11a2WT/WT mice. Neuronal iron uptake by DMT-1 is essential for normal hippocampal neuronal development and Slc11a2 expression is induced by spatial memory training. Deletion of Slc11a2 disrupts hippocampal neuronal development and spatial memory behavior
    corecore