41 research outputs found

    The vicinity of Jupiter: A region to look for comets

    Get PDF
    Low-relative velocity and long-lasting encounters can dramatically change the orbital elements of a comet; the object could be temporarily bound to Jupiter for a period of several years. It is well stated that most of the discoveries of comets occurred just after a close encounter with the planet and a decrease of the perihelion distance of the comet. So, why don't we look for comets during close encounters with Jupiter rather than waiting to find them afterwards? To estimate the feasibility of this proposal, dynamical computations and observational analysis of the Jupiter family of comets were made. A criterion to distinguish comets during an encounter from other moving objects in the field is discussed

    Twentieth century light curves and the nucleus of comet P/Tempel 2

    Get PDF
    Observations of P/Tempel 2 from 1899 to 1988 corresponding to 13 apparitions are analyzed in order to estimate the perihelion asymmetry of the gas production curve for different periods of its evolution. Using the correlation found by Festou et al. (1990) between the perihelion asymmetries and the delay in perihelion passage due to the action of nongravitational forces, we estimate the mass of the comet to be M approximately equals 1.6 plus or minus 0.5 x 10(exp 14) kg. Assuming a volume of 500 cu km, based on nuclear observations, a density of 0.3 plus or minus 0.1 g/cu cm is obtained

    Lofting of low speed ejecta produced in the DART experiment and production of a dust cloud

    Get PDF
    NASA sent the DART (Double Asteroid Redirection Test) mission to impact Dimorphos, the satellite of the asteroid binary system (65803) Didymos. DART will release LICIACube prior to impact to obtain high-resolution post-impact images. The impact will produce a crater and a large amount of material ejected at high speed (several tens of m/s), producing an ejecta cone that will quickly disperse. We analyzed an additional effect: the lofting of material at low velocity due to the generation of seismic waves that propagate inside Dimorphos, producing surface shaking far from the impact point. We divide the process into different stages: from the generation of impact-induced waves, the interaction of them with surface particles, the ejection of dust particles at velocities, and the prediction of the observability of the dust coma and trail. We anticipate the following observable effects: i) generation of a dust cloud that will produce a hazy appearance of Dimorphos' surface, detectable by LICIACube; ii) brightness increase of the binary system due to enhancement of the cross section produced by the dust cloud; iii) generation of a dust trail, similar to those observed in some Active Asteroids, which can last for several weeks after impact. Numerical prediction of the detectability of these effects depends on the amount and size distribution of ejected particles, which are largely unknown. In case these effects are observable, an inversion method can be applied to compute the amount of ejected material and its velocity distribution, and discuss the relevance of the shaking process.Comment: 12 pages, 13 figure

    Ground-based observability of Dimorphos DART impact ejecta: Photometric predictions

    Get PDF
    The Double Asteroid Redirection Test (DART) is a NASA mission intended to crash a projectile on Dimorphos, the secondary component of the binary (65803) Didymos system, to study its orbit deflection. As a consequence of the impact, a dust cloud will be be ejected from the body, potentially forming a transient coma- or comet-like tail on the hours or days following the impact, which might be observed using ground-based instrumentation. Based on the mass and speed of the impactor, and using known scaling laws, the total mass ejected can be roughly estimated. Then, with the aim to provide approximate expected brightness levels of the coma and tail extent and morphology, we have propagated the orbits of the particles ejected by integrating their equation of motion, and have used a Monte Carlo approach to study the evolution of the coma and tail brightness. For typical power-law particle size distribution of index --3.5, with radii rrmin_{rmin}=1 ÎŒ\mum and rmax_{max}=1 cm, and ejection speeds near 10 times the escape velocity of Dimorphos, we predict an increase of brightness of ∌\sim3 magnitudes right after the impact, and a decay to pre-impact levels some 10 days after. That would be the case if the prevailing ejection mechanism comes from the impact-induced seismic wave. However, if most of the ejecta is released at speeds of the order of ≳\gtrsim100 m  s−1\mathrm{m\; s^{-1}}, the observability of the event would reduce to a very short time span, of the order of one day or shorter.Comment: Accepted by MNRAS, June 30, 202

    Size and albedo distributions of asteroids in cometary orbits using WISE data

    Get PDF
    Context. Determining whether asteroids in cometary orbits (ACOs) are dormant or extinct comets is relevant for understanding the end-states of comets and the sizes of the comet population. Aims. We intend to study the value distributions of effective diameter (D), beaming parameter (η), and visible geometric albedo (pV) of ACO populations, which can be derived from NASA's Wide-field Infrared Explorer (WISE) observations, and we aim to compare these with the same, independently determined properties of the comets. Methods. The near-Earth asteroid thermal model (NEATM) is used with WISE data and the absolute magnitude (H) of the ACOs to compute the D, pV and η. Results. We obtained D and pV for 49 ACOs in Jupiter family cometary orbits (JF-ACOs) and 16 ACOs in Halley-type cometary orbits (Damocloids). We also obtained the infrared beaming parameter η for 45 of them. All but three JF-ACOs (95% of the sample) present a low albedo compatible with a cometary origin. The pV and η distributions of both ACO populations are very similar. For the entire sample of ACOs, the mean geometric albedo is p V = 0.05±0.02, (p V = 0.05±0.01 and p V = 0.05±0.02 for JF-ACOs and for Damocloids, respectively) compatible with a narrow albedo distribution similar to that of the Jupiter family comets (JFCs), with a p V ∌ 0.04. The mean beaming parameter is η = 1.0±0.2. We find no correlations between D, pV, or η. We also compare the cumulative size distribution (CSD) of ACOs, Centaurs, and JFCs. Although the Centaur sample contains larger objects, the linear parts in their log-log plot of the CSDs presents a similar cumulative exponent (ÎČ = 1.85 ± 0.30 and 1.76 ± 0.35, respectively). The CSD for Damocloids presents a much shallower exponent ÎČ = 0.89 ± 0.17. Conclusions. The pV- and η-value distributions of ACOs are very similar to those of JF comet (JFCs) nuclei. The ACOs in Tancredi's list are the best possible candidates to be dormant/inactive comets. The CSD for JF-ACOs is shallower and shifted towards larger diameters with respect to the CSD of active JFCs, which suggests that the mantling process has a size dependency whereby large comets tend to reach an inactive stage faster than small comets. Finally, the population of JF-ACOs is comparable in number with the population of JFCs, although there are more tens-km JF-ACOs than JFCs

    Using Cosmic Rays detected by HST as Geophysical Markers I: Detection and Characterization of Cosmic Rays

    Get PDF
    The Hubble Space Telescope (HST) has been operational for over 30 years and throughout that time it has been bombarded by high energy charged particles colloquially referred to as cosmic rays. In this paper, we present a comprehensive study of more than 1.2 billion cosmic rays observed with HST using a custom written python package, \texttt{HSTcosmicrays}, that is available to the astronomical community. We analyzed 75,90875,908 dark calibration files taken as part of routine calibration programs for five different CCD imagers with operational coverage of Solar Cycle 23 and 24. We observe the expected modulation of galactic cosmic rays by solar activity. For the three imagers with the largest non-uniformity in thickness, we independently confirm the overall structure produced by fringing analyses by analyzing cosmic ray strikes across the detector field of view. We analyze STIS/CCD observations taken as HST crosses over the South Atlantic Anomaly and find a peak cosmic ray flux of ∌1100\sim1100 CR/s/cm2CR/s/cm^2. We find strong evidence for two spatially confined regions over North America and Australia that exhibit increased cosmic ray fluxes at the 5σ5\sigma level.Comment: 48 pages, 30 figures, submitted to Ap

    Ground-based obser v ability of Dimor phos DART impact ejecta: photometric predictions

    Get PDF
    The Double Asteroid Redirection Test (DART) is a NASA mission intended to crash a projectile on Dimorphos, the secondary component of the binary (65803) Didymos system, to study its orbit deflection. As a consequence of the impact, a dust cloud will be be ejected from the body, potentially forming a transient coma- or comet-like tail on the hours or days following the impact, which might be observed using ground-based instrumentation. Based on the mass and speed of the impactor, and using known scaling laws, the total mass ejected can be roughly estimated. Then, with the aim to provide approximate expected brightness levels of the coma and tail extent and morphology, we have propagated the orbits of the particles ejected by integrating their equation of motion, and have used a Monte Carlo approach to study the evolution of the coma and tail brightness. For typical power-law particle size distribution of index –3.5, with radii r rmin = 1 ÎŒm and r max = 1 cm, and ejection speeds near 10 times the escape velocity of Dimorphos, we predict an increase of brightness of ∌3 magnitudes right after the impact, and a decay to pre-impact levels some 10 d after. That would be the case if the pre v ailing ejection mechanism comes from the impact-induced seismic wave. Ho we ver, if most of the ejecta is released at speeds of the order of 100 m s −1 , the observability of the event would reduce to a very short time span, of the order of 1 d or shorter.ANII: FCE_1_2019_1_15645

    The Berduc L6 chondrite fall : meteorite characterization, trajectory, and orbital elements

    Get PDF
    The fall of the Berduc meteorite took place on April 7, 2008, at 01 h 02 min 28 s +/- 1 s UTC. A daylight fireball was witnessed by hundreds of people from Argentina and Uruguay, and also recorded by an infrasound array in Paraguay. From the available data, the fireball trajectory and radiant have been reconstructed with moderate accuracy. The modeled trajectory was tested to fit the infrasound and strewn field data. From the computed apparent radiant alpha = 87 +/- 2 degrees and delta = -11 +/- 2 degrees and taking into account a range of plausible initial velocities, we obtained a range of orbital solutions. All of them suggest that the progenitor meteoroid originated from the main asteroid belt and followed an orbit of low inclination. Based on petrography, mineral chemistry, magnetic susceptibility, and bulk chemistry, the Berduc meteorite is classified as an L6 ordinary chondrite

    Pre-encounter predictions of DART impact ejecta behavior and observability

    Get PDF
    We overview various efforts within the DART Investigation Team’s Ejecta Working Group to predict the characteristics, quantity, dynamical behavior, and observability of DART impact ejecta. We discuss various methodologies for simulation of the impact/cratering process with their advantages and drawbacks in relation to initializing ejecta for subsequent dynamical propagation through and away from the Didymos system. We discuss the most relevant forces acting on ejecta once decoupled from Dimorphos’s surface and highlight various software packages we have developed and used to dynamically simulate ejecta under the action of those forces. With some additional software packages, we explore the influence of additional perturbing effects, such as interparticle collisions within true N-body codes and nonspherical and rotating particles’ interplay with solar radiation pressure. We find that early-timescale and close-proximity ejecta evolution is highly sensitive to some of these effects (e.g., collisions) while relatively insensitive to other factors. We present a methodology for turning the time-evolving size- and spatially discretized number density field output from ejecta simulations into synthetic images for multiple platforms/cameras over wide-ranging vantage points and timescales. We present such simulated images and apply preliminary analyses to them for nominal and off-nominal cases bracketing realistic total mass of ejecta and ejecta cumulative size–frequency distribution slope. Our analyses foreshadow the information content we may be able to extract from the actual images taken during and after the DART encounter by both LICIACube and Earth-vicinity telescopes.ANII: FCE_1_2019_1_15645

    Update on the BINGO 21cm intensity mapping experiment

    Get PDF
    1cm intensity mapping is a novel approach aimed at measuring the power spectrum of density fluctuations and deducing cosmological information, notably from the Baryonic Acoustic Oscillations (BAO). We give an update on the progress of BAO from Integrated Neutral Gas Observations (BINGO) which is a single dish intensity mapping project. First we explain the basic ideas behind intensity mapping concept before updating the instrument design for BINGO. We also outline the survey we plan to make and its projected science output including estimates of cosmological parameters
    corecore