39,790 research outputs found

    On the magnon interaction in Haematite. 2: Magnon energy of the acoustical mode and magnetic critical fields

    Get PDF
    Previous spin wave theories of the antiferromagnet hematite were extended. The behavior of thermodynamic quantities around the Morin transition temperature was studied, and the latent heat of the Morin transition was calculated. The temperature dependence of the antiferromagnetic resonance frequency and the parallel and perpendicular critical spin-flop magnetic fields were calculated. It was found that the theory agrees well with experiment

    Magnetoelastic Coupling in the Spin-Dimer System TlCuCl3_3

    Full text link
    We present high-resolution measurements of the thermal expansion and the magnetostriction of TlCuCl3_{3} which shows field-induced antiferromagnetic order. We find pronounced anomalies in the field and temperature dependence of different directions of the lattice signaling a large magnetoelastic coupling. The phase boundary is extremely sensitive to pressure, e.g. the transition field would change by about +/- 185$%/GPa under uniaxial pressure applied along certain directions. This drastic effect can unambiguously be traced back to changes of the intradimer coupling under uniaxial pressure. The interdimer couplings remain essentially unchanged under pressure, but strongly change when Tl is replaced by K.Comment: 4 pages with 4 figures include

    Massless Scalar Field Propagator in a Quantized Space-Time

    Full text link
    We consider in detail the analytic behaviour of the non-interacting massless scalar field two-point function in H.S. Snyder's discretized non-commuting spacetime. The propagator we find is purely real on the Euclidean side of the complex p2p^2 plane and goes like 1/p21/p^2 as p2→0p^2\to 0 from either the Euclidean or Minkowski side. The real part of the propagator goes smoothly to zero as p2p^2 increases to the discretization scale 1/a21/a^2 and remains zero for p2>1/a2p^2>1/a^2. This behaviour is consistent with the termination of single-particle propagation on the ultraviolet side of the discretization scale. The imaginary part of the propagator, consistent with a multiparticle-production branch discontinuity, is finite and continuous on the Minkowski side, slowly falling to zero when 1/a2<p2<∞1/a^2<p^2<\infty. Finally, we argue that the spectral function for the multiparticle states appears to saturate as p2p^2 probes just beyond the 1/a21/a^2 discretization scale. We speculate on the cosmological consequences of such a spectral function.Comment: 6 pages, 1 eps figure embedded in manuscrip

    S=1/2 Kagome antiferromagnets Cs2_2Cu3MF_3MF_{12}$ with M=Zr and Hf

    Full text link
    Magnetization and specific heat measurements have been carried out on Cs2_2Cu3_3ZrF12_{12} and Cs2_2Cu3_3HfF12_{12} single crystals, in which Cu2+^{2+} ions with spin-1/2 form a regular Kagom\'{e} lattice. The antiferromagnetic exchange interaction between neighboring Cu2+^{2+} spins is J/kB≃360J/k_{\rm B}\simeq 360 K and 540 K for Cs2_2Cu3_3ZrF12_{12} and Cs2_2Cu3_3HfF12_{12}, respectively. Structural phase transitions were observed at Tt≃210T_{\rm t}\simeq 210 K and 175 K for Cs2_2Cu3_3ZrF12_{12} and Cs2_2Cu3_3HfF12_{12}, respectively. The specific heat shows a small bend anomaly indicative of magnetic ordering at TN=23.5T_\mathrm{N}= 23.5 K and 24.5 K in Cs2_2Cu3_3ZrF12_{12} and Cs2_2Cu3_3HfF12_{12}, respectively. Weak ferromagnetic behavior was observed below TNT_\mathrm{N}. This weak ferromagnetism should be ascribed to the antisymmetric interaction of the Dzyaloshinsky-Moriya type that are generally allowed in the Kagom\'{e} lattice.Comment: 6 pages, 4 figure. Conference proceeding of Highly Frustrated Magnetism 200

    The adiabatic evolution of orbital parameters in the Kerr spacetime

    Full text link
    We investigate the adiabatic orbital evolution of a point particle in the Kerr spacetime due to the emission of gravitational waves. In the case that the timescale of the orbital evolution is enough smaller than the typical timescale of orbits, the evolution of orbits is characterized by the change rates of three constants of motion, the energy EE, the azimuthal angular momentum LL, and the Carter constant QQ. For EE and LL, we can evaluate their change rates from the fluxes of the energy and the angular momentum at infinity and on the event horizon according to the balance argument. On the other hand, for the Carter constant, we cannot use the balance argument because we do not know the conserved current associated with it. %and the corresponding conservation law. Recently, Mino proposed a new method of evaluating the averaged change rate of the Carter constant by using the radiative field. In our previous paper we developed a simplified scheme for practical evaluation of the evolution of the Carter constant based on the Mino's proposal. In this paper we describe our scheme in more detail, and derive explicit analytic formulae for the change rates of the energy, the angular momentum and the Carter constant.Comment: 34 pages, no figur

    Contracted Representation of Yang's Space-Time Algebra and Buniy-Hsu-Zee's Discrete Space-Time

    Full text link
    Motivated by the recent proposition by Buniy, Hsu and Zee with respect to discrete space-time and finite spatial degrees of freedom of our physical world with a short- and a long-distance scales, lPl_P and L,L, we reconsider the Lorentz-covariant Yang's quantized space-time algebra (YSTA), which is intrinsically equipped with such two kinds of scale parameters, λ\lambda and RR. In accordance with their proposition, we find the so-called contracted representation of YSTA with finite spatial degrees of freedom associated with the ratio R/λR/\lambda, which gives a possibility of the divergence-free noncommutative field theory on YSTA. The canonical commutation relations familiar in the ordinary quantum mechanics appear as the cooperative Inonu-Wigner's contraction limit of YSTA, λ→0\lambda \to 0 and $R \to \infty.

    Uniaxial pressure dependencies of the phase boundary of TlCuCl_3

    Full text link
    We present a thermal expansion and magnetostriction study of TlCuCl_3, which shows a magnetic-field induced transition from a spin gap phase to a Neel ordered phase. Using Ehrenfest relations we derive huge and strongly anisotropic uniaxial pressure dependencies of the respective phase boundary, e.g. the transition field changes by about ±185\pm 185 GPa depending on the direction of uniaxial pressure.Comment: 2 pages, e figures; presented at SCES200

    Dynamical horizon of evaporating black hole in Vaidya spacetime

    Full text link
    We consider how the mass of the black hole decreases by the Hawking radiation in the Vaidya spacetime, using the concept of dynamical horizon equation, proposed by Ashtekar and Krishnan. Using the formula for the change of the dynamical horizon, we derive an equation for the mass incorporating the Hawking radiation. It is shown that final state is the Minkowski spacetime in our particular model.Comment: 6 pages, 2 figure

    Unfolding the Sulcus

    Get PDF
    Sulci are localized furrows on the surface of soft materials that form by a compression-induced instability. We unfold this instability by breaking its natural scale and translation invariance, and compute a limiting bifurcation diagram for sulcfication showing that it is a scale-free, sub-critical {\em nonlinear} instability. In contrast with classical nucleation, sulcification is {\em continuous}, occurs in purely elastic continua and is structurally stable in the limit of vanishing surface energy. During loading, a sulcus nucleates at a point with an upper critical strain and an essential singularity in the linearized spectrum. On unloading, it quasi-statically shrinks to a point with a lower critical strain, explained by breaking of scale symmetry. At intermediate strains the system is linearly stable but nonlinearly unstable with {\em no} energy barrier. Simple experiments confirm the existence of these two critical strains.Comment: Main text with supporting appendix. Revised to agree with published version. New result in the Supplementary Informatio
    • …
    corecore