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ABSTRACT

Recent findings indicate that magnetic anomalies occur in rocks
in the sector in which an earthquake is recorded. The enhancement
of the local geomagnetic field is believed to result from the pressure
buildup beneath the ground before the quake, Also, there are certain
cases in which magnetic anomalies appear to correlate with areas
of tectonic activity and mineral concentration,

The antiferromagnet Haematite (a~-Fe,Q;) exhibits an anomalistic
behavior about a magnetic ordering temperature calied the Morin phase
transition. Below this temperature the system exists entirely in the
antiferromagnetic state, while above if, a ferromagnetic phase, and
hence a net magnetic moment appears. In this report, a more exten-
sive spin wave theory of Haematite is developed. The behaviour of
thermodynamic quantities around the Morin transition temperature is
studied, and also the latent heat of the Morin transition is calculated.
The temperature dependence of the antiferromagnetic resonance fre-
quency and the critical fields Hey and Hel is calculated. It is
found that the theory agrees well with experiment,
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ON THE MAGNON INTERACTION IN HAEMATITE.
II. MAGNON ENERGY OF THE ACOUSTICAL MODE
AND MAGNETIC CRITICAL FIELDS

I, INTRODUCTION

All processes in nature including geophysical phenomena are thermodynamic
in origin. Because of the magnitude of the pressures, volumes and tempera-
tures associated with processes in the Earth's interior, most external mani-
festations of such events are large scale in time and space,

Magnetic field studies are a source of information on the properties, structure,
and dynamics of the Earth's crust, mantle and core. Ceomagnetic anomalies
are known to correlate with geologic structures and with areas of mineral
concentrations and tectonic activity, One of the most important mineral oxides
to be found in sedimentary rocks is the magnetic compound known as Haematite,
Haematite has the corundum structure and orders magnetically at the Neéel
temperature Ty = 947 K. For temperatures hetween Ty and the Morin tempera-
ture Ty = 261 K, haematite is a canted antiferromagnet with the spins perpen-
dicular to the c axis. For temperatures below Ty, haematite is a uniaxial
antiferromagnet with the spins lying along the ¢ axis. The transition at Ty is
called the Morin transition. There are a number of experimental and theoretical
studies most of which are deseribed in the paper of Jacobs et al. (1971),

The mechanism of the Morin transition in haematite was believed to be the sign
change of the uniaxial anisotropy energy at Tjy (Kanamori 1963, Artman et al
1965), However, several experiments including the antiferromagnetic resonance
experiment of Foner and Williamson (1965) and the magnetically induced and

the stress-induced Morin transition experiments (Flanders 1969, Allen 1973)
were not explained by the simple anisotropy theory. In order to investigate

the mechanism of the Morin transition, several people have recently studied

tha effect of the magnon interaction on the optical-mode magnon energy (Herbert
1970, Nagai et al, 1972), On the other hand, the temperature dependence of

the acoustical-mode energy was studied by Bonavito (1970) and Watarai (1973)
by using the two-sublaitice maiial for this erystal. Very recently, the present
authors (Nagai et al, 1973) prenisets studied the spin-wave theory of haematite
and pointed out that the eritlcail e gerature T at which the magnon energy in
low-temperature phase becomes hinaginary is slightly higher than the tempera-
ture Ty, at which the magnon energy in the high-temperature phase becomes
imaginary, Thus, we have two kinds of locally stable states in a narrow tem-
perature region near T,, .




II, ACOUSTIC MODE ENERGY

We start from the following model Hamiltonian

H=2] Y 8§.8,~B[LS2+YS2]—A Y $Su~D Y (5x8,).,
CJem) J m {homy Cjemd (1)

assuming the two-sublatiice body-centred lattice. Ilere 8, and Sp are the
vector spin operators associated with the jth and mth atoms of the erystal and
the sum X, .y 18 extended over all nearest-neighbour palrs, The exchange
interaction is piven by the first term of (1). Since we assume J 2> 0, the jih
and mth spins are coupled antiferromagnetically, The second term denotes
the one-ion type uninxial anisotropy encrgy which makes spins dircet tothe w0
axis, On the other hand, the dipolar type interaction which is given by the
third torm tends to make the spins lie in the xy plane. The rdle of the
Dzyaloshinsky-Moriya (DM) interaction, the last term, is similar fo that of
the dipolar-type interaction except that the DM interaction makes the inferict-
ing spins orthogonal to each other when the spins lie in the xy plane.

Recently, Jacobs et al, (1972) pointed out that the crystalline anisofropy energy
of the form

- c[%: S+ ) Sh] 2)

may be important in explaining AFMR experiments. The effect of this energy
will be discussed in IV.

In the low-temperature phase, the spins are paraltlel to the tz axis, as described
in the Introduction. By using the method described in our previous paper (1973),
the magnon Hamiltenian H, is given by

Hy, = f2JSZ); [g\(alay + b}bY + ganiauby + givalbl + ganlalb_y + abLy)

3)
T gulaaoy + biboy) + gh(alaly + bIbLY). ‘



Here g, ete are given by

gy = (1 = 1y — wy) — €{l —u) + v(1 = 17285 = 2u) — idwy,
gy = (1 =y, — w) = id{L — 1) + ew, )
gy = =xi(1 — & =y + yb) —didly, — yi)

gy = —42vyy + X, — idxy),

where e = A/2J and v = B/Jz, The parameters up, wy, X, and y, are defined
by (2/N8) Z,< aha,>, (2/NS) £, <albl, > 7q, (3/NS)Z, < afby >vq and (2/NS)

Zy <ﬂ1;|ﬁ.-q> respectively, In (4), w;, and w; are defined hy (w_ + w;f)/z and
(w - w*)/2, respcctively. The diagonalization of the Ilamiltonizn may be done
as follows. Confining our aftention to the positive half space of k, we define
the new operators:

Qog = (7'.‘)”2(44& + Cy b_y= (’lz‘)m(fik —~ Cy (5)
a-y = (HVHB, + Dy, byy = V3B, — DY

Furthermore, we introduce F, and Gy by

g% + 243

J2k T IR R L=

- U2k —_2545_ Gk
¥ |gzk + 24|

_Ek_:’ 29’4|

where gog = By 204 B3 = B34k

Finally, introducing the operators a; and g, by

F} = «l,cosh 0, — By sinh 0, Bi = fil,cosh 0, — ey, sinh by,
G} = al, cosh ¢, — Pasinh ¢, Df = fil, cosh ¢ — oz sinh ¢y,

where

2 _2
tanh 20, = lg—z-'f-j-—-Qil- and tanh2¢, = lgi"-——g'*—l,
g+ ga gy — O




we obtain

2 ‘
H, = ;i; heglahon + 3, (G)

where
{ 2 i 27142 (7
hw, = 2JSZ[(£?: —(—-1D'g* — lfizk - (—1)294| ] '

In our approximation, u,, ete ave determined from the following equations:

1
Hy = mz [cosh 20,,(1 + 2u%) + cosh 20,(1 + 2u%) — 2],
k

1 93 + 293 Ly o, 935 — 29}

= — % (1 _ —_——— L 4
W, NS l: oo (1 + 2n}) + . X (1 +2n3)| % (ZJS(S.)
Lo g1+ 93 Ly _ 91— U L
% =55 [ o X (1 200 = Lo I (1 gy | x (205)

1 gh + 2g% : g3 — 2g%
RN Y o S oV § VR, T R L L S L RV L
3 SiS *[ o~ x (1 + 2n%) P X (1 + 2nz)| % (2J82),
where nll": = [exp (fhewy)-1]7 with g = 1/k,T. In the magnon renormaliza-

tion approximation (MRA), up, w, X and y, are calculated from (8) self-
consistently,

Since uy, ete are of the order (1/8), the square root of (7) can he expanded in
a power series with respeet to (1/S). Since we retained only those terms up
to order of (1/8)- and (1/8) in the Hamiltonian, the square roof of (7) will be
accurate up to order of (1/8), as pointed out previously (Nagai 1969),

By assuming that the anisotropy energy is very much smaller than the exchange
energy, the temperature-dependent magnon energy with wavevector k can be
written as



hwy = 2082[(1 =y (1 =ty — wi )2 + (1 — 1y — w ) {21 = 21) (9)
— (2¢ + d) (1 = uy, + w33

where ¢ ' = p{l - 1/28), Tor the suke of convenience, we give the estimation of
the magnitude of the anisotropy parameters in (9). According to the experiment,
the eritical finld IIyy s 68 kG at T = 0 K. This corresponds to hwy = 10 K.

We may assume 2J5z = 1000 K because Ty ~ 947 K. Hence we find that

(vt -2¢ - d?) is of the order 10, On the other hand, the experlmental value
of H,11s L60 kG at T'= 0 K, The magnitude of d Is estimated {o be of the order
ol 102 from the relation d = (gug/2752) (1-13”/ Hg1), which will be explained in
Il1-2. The calculation of dipolar energy leads to ¢ = 107, and hence v is sup-
posed to be of the order 107 ,

If we use (9) for the magnon energy, the equation for T, at which hew, (T) vanishes
is given by

201 — 2u) — (2 + dH (1 — v, +w) = 0. (10)

By using this equation, T is calculated as

koo ) _ (1SS! (20 — 2 — d7\M
2JS:z/  \dn? 2e + ? ' (11)

and hew,, (T) is written as
hwiolT) = hwpolT) = hwyof0) [1 = (T/T1)*]'72, (12)

where heo, ((0) = 2J8z(%p' - 2¢ - d3y%,

In the high~temperature phase, the spins are in the xy plane and they are
canted stightly by the DM interaction. If we denote the angle between the jth
and the mth spin vectors by (7 -20) as seen in Figure 1, the Hamiltonian is
written as



“—

Figure 1. Coordinate Axes in the High-Temperature Phase,

He ¥ [(2Jc0s20 + Dsin 200(S:S; + S + (20 = A) S, e

{romd

+ (2J 5i1 20 = D €05 20) (S,:Spy = 5,5m)] = BIY S% + T S2).
i m

(13)

The angle & may be determined from the condition 2J sin 20 - D cos 20 = 0, By
using again the Holstein-Primakoff fuemalism, the magnon Ilamiltonian for the

high-temporature spin configuration is given in the same form with (3). In this
case, g, ete, which are written as Biny ete, are given by

gy = (1 =ty = wy, = 300 + 2elwy, + %)) + 231 =y — wy, + 3xp)
= 3L = 2uyy = 2wy + ¥
Gz = (1 = ay =~ wy) = Je(l = 1wy = 3y) + 3230 = ) = wy + Ly,
Pus = — Xy~ 0 + 30 — e[l — uy — W + 3] = P[0~y
+ Xy + gl + M
Pia = — L02x5 4+ wy) + Felxy + w4 Jd® vy = x) = 3L+ 1/4S = 3y = §y)

(14)



We may caleulate the magnnn enersy hodT) using the formula (7), and then

we obtain the critieal temperature Ty, where tho magnon energy with Infinite
wavelength vanishes, hwyo(T);) = 0. We have shown in the previous papor
(Nagai ot al. 1973) that the critical temperature in the low-temperature phaso
T, 1s slightly higher than the critieal tompesnture in the high-temperature
phaso Ty, The difference botween them is obtained as $»' x Ty and it s of

the order 0+1 K, Using the condition that the fiae energies in hoth phases are
equal, we caleulate the Morin temperature Ty as Ty ~ Ty x (L - »). By using
this Ty In (12), hew (Ty) is ostimated to be only a fow kG, According to Fonor
and Williamson (1965), the magnitude of hwo (Ty) is 28 kG, Thus the theory
does not agrec with the experiment on this point. Recently, Jacobs et al, (1971)
pointed out that this contradiction may he removed if we assume the S,f‘ type
erystalline anisotropy encergy. Even if this type of anisoiropy is introduced the
magnon energy spectrum with k # 0 may not be affeeted and accordingly the
thermodynamic quantities are not affected, Hence we c¢aleulate the thermodynamic
guantities without introducing the higher-order anisotropy enorgy in this section,
The effect of this anisofropy energy on the physical quantities will be discussed
in Iv,

It was shown in our previous paper (1973) thatthe magnon energy withk # 0 at
moderately high temperatures i{s given by

ﬁw“.{T) = 11;'2(1 - }'f)”z, (15)

where Hyp = 2J8z(1 - up~ wy) for the low-temperature spin configuration and
Hyp = 2d8z(L - uy = wyy = 4e) for the high-temperature spin configuration. The
thermodynamic quantities around the Morin temperature can be calculated in
the same way as in a previous paper (Nagai and Tanaka 1969). The difference
between the sublattice magnetization M just below T,; and M just above Ty is
calculated as

. F 2
AM = NI(T‘M bl 0) o f‘-‘.’{'n‘g + GJ zg(é}gf) X v (16)

The corresponding guantity in the case of the magnetic specific heat C(T) is
calculated as




AC = C(Ty — 0) = C(Tyy + 0) = Nk,,( i )(’2‘3?') X V. a7

Thus, we find both (AM/M) and ( AC/C) are smaller than 17, Reeently, Allen
(1973) analysed the experiment of the stress-induced Morin transition of this
substanco. He estimated the latont heat of this transition to be 5 x 10° erg/em*,
According to the present theory, the latent heot is calculated as

TM X [S( Ri + Wt - S{ 'I:“ — 0)] = [\ k" I“ (Slns ) (ﬁf};&l) %Xy (18)

where S('I‘) denotes tho entropy, The latent heat of (18) is evaluated to be
2x10% x v erg em?, This value is of the same order of muagnitude as the
Allen value, In the above calculations, we neglected the effect of the optical-
mode magnon energy because its magnitude is of the order 10° K.

III. MAGNETIC CRITICAL FIELDS

1. Parallel Critical Field H¢) (T)

It is known that tho spin-flop eritical field Hj in the case of the uniaxial
antiferromagnet is, in the molecular-field approximation (Nagamiya et al,
1955), given by

1412
grgH, = hw (T)(mm-*-—«ﬂ) . 19
Hne ¢ Y ARl 47 2

On the other hand, the spin-wave theory gives the same result at low
temperatures (Nagai and Tanaka 1970}, In the latter paper, the critical
field is defined as the field at which the energy of the magnon with infinite
wavelength vanishes. Exactly speaking, the critical field Hyj obtained in
this way is slightly different from the critical field obtained from the con~-
dition that the free energies in both the flopped and unflopped phases are



equal, Actually, according to our thoory, AFMR deos not vanish at Ty, and
its magnitudo {s calculated to be 2 kG at Ty. Therefore, I, (Ty) Is also
equal to 2 kG if the equation (19) Is used for He| . However, it 1s known
that Hey (T) must vanish at the Morin transition temperature because the
Morin transition occurs without a magnetic field, If we {nspect the equa-
tlon for detormining Hg) (T) more procisely, wo will find | (Ty) = 0.
Actually, T, is very close to Ty and H¢y (Ty) = 2 kG i8 very small com-
pared with I (0} = 68 kG, Hence H.j (T) is approximately given by (19)
of which the main temperature behaviour is written ns

Hc]i(T) = ”cu(o) [l = (T/Rl)4]llz (20)

where Hy| (0) = (2JSz/guy) (20! - 2¢ - %)%, The theoretical result of
Hejp (T) 18 compared with experiment of Foner and Shapira (1969) in Figure 2.

H,,, (kG)

20} =

1 I .
0 50 150

Temperature (K)

L
250

Figure 2, Temperature Dependence of H|j (T) which is Computed from
(19) is Compared with Experiment (Foner and Shapira 1969).



Next let us ealeulate Ty and Hy) (T} In the suelecular-fiold approximation
in order to seco the correspondence of the spin-wave result to the moleculur-
fleld resulf. We neglect the DM Interaction for gimplicity,

The Woiss molecular-field Hamiltonian Hy) in the unflopped phase is given
by

Fiyy = (2] = A) (JZW [S5Smgd+ €81ed S = {8, <S )]
- B[LS} ) Sacd = gl [ 8,0 + 3 Sue). (21)
J m J ’ m

Let us introduce the variables p and n by <S> =p +nand <G> =

~-p + n. Here p denotes the average value of jth spin in the etse IT= 0 and

n is approximately proportional to H, TFurthernm.ore, wae define p, and p!

by p=pg +p'. Here p'ls proportional to A or B and py = <S> -

Tr [Sjexp(- ﬁI—I,?l) 1/Zq, where H;ﬂ = =2J2py2 Sy and Zg = Tr[exp(—ﬂl‘lﬁ) '
o free energy Fyy in the unflopped phase is calculated as

F;:‘ = —I\BT ann + NJZP%“ 4 E) - A’J:\'<S}:>0 - (Z“IIZIZ). (22)

The molecular-field Hamiltonian H ,f, in the flopped phase is glven by
HY = J%) [(2J cos 20 + A sin?0) {SJ:<S"1¢> + €8, S — (SK)(S,,,Q}
~ (B/2){(S. + S%)sin® 0 4 (S} + 52, cos? 0}] 23)
— guyH sin 0(; S~ ;S,,,;).
wherc “he angle Detween H and 8; is given by (-?_gwr-O).
Let us define p and n! by < Sp> = ~<8y>=p+n where p is a 0-indepen-
dent term. Again we introduce pg and p' by p = pgy + p'' where p" is pro-

portional to A or B, Differentiating the free energy Fy with respect to ¢,
we obtain sin 0 = gup H/4Jzpg. TFinally, the free energy is written as

Fla= NJzp§ — kyTInZg = NB{S%>g ~ (7. H?/2), (24)

10
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By equating Fy to F{, , we may caleulate the Morin temperature Ty, and
also thae eritienl field H,, (T).

o |

The equation for determining Ty in the case H = 0 is given by
21(8% — Sido — 265,05 = 0. (25)

This equation was alraady used previously in order to explain the Morin
transition (Kanamori 1963). The ¢ ltical field Hg (T) is calculated from
the following cquation;

ginH o (T) = 2J2020(8% — Shdo ~ 2e{8,0a]"" x [1 + (zy/27)]: (26)

which should be compared with (19), If the DM interaction is taken into
account, € in (25) and (26) is replaced by [e + (d2/2)].

2. Perpendicular Critiecal Field Hel

If a magneiic field is applied perpendicular to the ¢ axis, say, parallel
to the y axis, then the spins rotate in the xz plane and suddenly flop into
the x axis at the critical field H;; (T). This situation can be seen in
Figure 3,
M

Figure 3. Spin Arrangement in the Magnetic Field (H|ly Axis).

11



The Hamiltonian of the system is the sum of (1) and the Zeeman term
HZ = — iy H (; S}y + Z Sm}')' (27)
. m

We take the coordinate axes iEj m§ ]§ for the jth spin and the axes ;E.w'-'?nvfmi
for the mth spin, In this new system 8; and S,, are written as

SJ’x SH /S"'-* S’"'{
S”. = (D+(0, d)) Sm Smy = (D-(ol (f)) qu ' (28)
jz S_r( \ n'z mf

where

O.(0,¢) = 0 cos 0 +4-5in 0

-sin¢ Fsinfcos¢ coslcos¢

cos¢ TFsinlsing cosOsing
) ' (29)

Substituting (28) into the Hamiltonian and expanding tho Hamiltonian in
terms of spih~wave operators, then we obtain a series

where I denotes the classical energy and is of the order s?, and Hy, Hy,
Hy and H, are, respectively, of the order §%2, %2, s!/2and 8°.

If we omit the last two terms in (30), we can obtain the temperature~
independent solution of H,, . The angles & and ¢ are, in this approxi-
mation, given as follows: (i) sin 0 = h(v - ¢)/(2v - 2¢ - d?) and sin ¢ =
dtan 8/(v- e) (unflopped phase); (ii) sin § = (h + d)/2 and ¢ = 7/2 ({lopped
phase)., Here h is defined by h = guy H/2JSz.

The free-magnon Hamiltonian in the unflopped phase is obtained in the same

manner as that given in the previous section. After a somewhat extended
manipulation, the free-magnon energies are given by

12



hwfy = 2J82[1 — y2 + 2v = 2e — d* — (d*h?* )2y — 2¢ — dW)]'73,
hﬂ)gk = 2JSZ[] - '}'E + 2v — 2¢ — d2 + 112{4(11 —_ E)Z - 4{12(\' — E) (31)
— d*}f(2v = 2¢ — dH?])',

where we used the relatlon 1 » d?, v, ¢. The critical field h¢| is deter-
mined from the condition hwﬁ] = 0 and is given by het = 2y ~ 2¢ - dz)/d.
On the other hand, h, is given by hej = @v ~ 2¢ ~ d%)* and hence hey is
written as hey = hej /d,

The magnon Hamiltonian in the flopped phase is obtained similarly, The
free-magnon frequencies in the flopped phase are written as

hew', = 2J82[1 — yE + hd — v — 2¢ — d¥]*2,

haly, = 2JSz[1 - 9% + h(h + "2 (32)

The temperature dependence of the critical field H) (T) may be obtained
from the condition that the temperature~dependent magnon energy with
inifinite wavelength vanishes. The caleulation of H¢y (T) was performed

as follows: (i) the temperature dependence of ¢ and ¢ is taken into account
by appiying the RPA in the cubic terms of magnon operators in Hy; (ii) the
quartic terms of magnon operators in Hq are treated by using RPA; (iii) the
non-diagonal matrix elements of the cubic terms of magnon operators in

Hj are taken into account by using the second-order perturbation approxi-
mation (Maekawa 1973). After a complicated manipulation, the tempera-
ture dependence of the perpendicular critical field was found to be hel (T) =
[hej(T)}2%/d. We will not write out the derivation of this result by the use
of the above~mentioned method, because it is much too complicated and
lengthy, Instead, we derive the same result by the use of molecular-field
approximation.

The molecular~-field Hamilfonian is written as

Hy=2J ¥ [(cos28 — cos® 8cos® ¢ + dsin 20sin ¢) (Sypm + P,Smc — Pjm)
(Jomy

— (€/2) {sin® ¢(S% + S22 + sin? fcos? ¢(S% + S} (33)
—Shsin 6(S; — Sy)].

where p; =< 8;;>. By using a method similar to that given in the previous
section, the free energy in the molecular-field theory can be calculated.

13




iv.

From the conditions aFy/00 =0 and 3F,/0¢ =0, we obtain the following
two equations:

cos 0 cos ¢[cos Osin p(v{S% — SiDg — €(§,D3) — dsin 08,75} = 0,
sin 20[2¢S;,>5 + cos? P{v(Sk — S}do — €{S,>51] —2d cos 20 sin ${S;;>3 (34)
= 285(S;:)¢ 1 cos 0.

In deriving (34), we used the relation <8 8y, + 8, 8;;>y = <88y, + 8y Sue
=0, In the unflopped phase, ¢ and ¢ are determined from the following equa-
tions:

sin ¢ = dtan 0f(v; — €),

2
I = sin 0((S, /S) X (2 - -—51-—;) (35)

W)
where ») = v<8j - SJ;>0/<'. SJ;—>% . On the other hand, we have ¢ = 7/2

and

2{8; Do sin 0 = Sh+ d{(S;>0 (36)

for the flopped phase. By equating Fy (flopped phase) to Ty (unflopped phase),
the equation for determing the perpendicular critical field is given by

h = (2v, — 2¢ — d*/d (37)
where h' = 8h/<S;>; . I we use (26) we may write
_1.s 2
hea(T) = Hm[hcn(n] (38)

of which the main temperature dependence is given by [1 - (T/ TM)4 I. The
computed result of hy; (T) is compared with experiment in Figure 4.

FOUR-~-SUBLATTICE MODEL

Let us compare the theory based on the four-sublattice model with experiment.
As can be seen in the previous paper (Nagai et al, 1972), the energy of the
magnon with infinite wavelength is written as

(hwo)* = —S2D?* + 28%2Jq + 6J, + 12J3) [2U — {0, — @y, — Oy + ;).

(39)
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Figure 4, Temperature Dependence of He) (T) which is Computed from
(38) is Compared with Experiment {Foner and Shapira 1968).

where D denotes the DM constant and U the uniaxial anisotropy constant. The
dipolar anisotropy constants gyyare defined by

Pypy = 4#121 Z (th\w' - 3zlzvhf)/(RNM)5 = (4!15/“3) Pyp

Hpirg

where a denotes the lattice parameter 5 . 42 x 108em, Ry and Ry belong to
the N and M sublattices, respectiveiy, and Ryy = Ry ~ Ry. The numerical
values are given by Py, =1+ 09, P; ==9-15, Pj3=-2* 03 and P, =11 0l. By
using the exchange parameters proposed by Samuelsen and Shirane (1970), we

phtain 239 + 6J, + 1275 = 468 K. It is seen by inspection that we may adopt
the following substitutions:

ZJZ = 2.]0 + 6J2 -+ 12J3, h = (gyBH/S)/(?.JO + 6-]2 +- 12.]3),

V= U/(Jo+3J2+6J3), d‘—=D/(2Jo+6J2+ 12J3).
¢ = 30 =Dy -3+ Dy
3 30, ¥ 64, + 127,
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By using the experimental values of the critical fields at T = 0 K, we obtain
U=0-222 k; and Ty, is estimnted to be 258 K.

1. Effect of Si-term

In this section, we give a qualitative discussion of the effect of the higher-
order anisotropy energy on the magnon frequency. If we use the Holstein-
Primalkoff formalism for spin operators, the higher~order anisetropy
energy is written in a series

~C84, = —CS*[1 — (4/S)(1 — 3/25) ala; + (6/5%) a}aja;a,
-+ higher-order terms of (1/8)).

We retain up to the third term in the brackets and neglect the others. By
using the method described in II, the magnon energy of (9) can be written
as

hwT) = 20S2[(1 ~ v (1 —up — w2 + (1 —uy, — w)J2v(1 = 2up)
+ de(l — 61 — (2¢ + dB) (1 — u, + wo)}]'3, (40)

where ¢ = CS%(1 - 3/58)/Jz. The critical temperature T{ at which howyo(T)
vanishes is given by

e
2782/ \4n? 2€ + d? '

On the other hand, it is easily seen that the magnon energy in the high-~
temperature phase is given by

howy T) = 27 8z[(1 = yD)(1 — tyy — wyy — 3€)* + (1 — 1ty — w){(2e + A1 =1y + wy)
=201 = 2uy) — 3c(1/28) + w2 (42)

Thus, the magnon energy hw{T) is not affected by the introduction of c,
and it is approximately written as

hwye = 2J82(2¢ — 2€ — dH)V2[ —1 + (T/T)*]H4,
(43)

16
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where

, f‘nﬂl 3 ISS 14 2},_0-_ 25‘_ dz 11
2JSz | \4n? 2¢ + d? '

The Morin temperature can be calculated in a manner similar to that used
in II-1. The equation for determining Ty, is written as

2v(1 = 2up) ~— (2¢ + dH (1 = up + w) + 2¢{l — 4u) =0, (44)
by which Ty is written as

(5,,7;, _[15S\Ye/ 2¥ 4 2 — 26 — 42 1P (45)
2J8z)  \4n? 2¢ + d* '

If we uce the above expression for Ty, AFMR is written as

hos ol T) = 24S2[2¢ + 2V + 2¢ — 2¢ — dB{} — (T/T*}]'72, (46)

and we also obtain hwg (Ty) = hewyp(Ty ) = 2J5z(2¢) ", By using the experl-
mental value hwg(Ty) = 28 kG, ¢ is estimated tobe 0* 58 x 10°5, I we
write (46) in the following form

hw o T) = howo(O)[1 — (T/TD*]'3, (46)

T} is written as T} = Ty (1 +§), Here § = (¢/2)/(2v' +4c - 2¢ - d?) is
estimated to be 0 04. The temperature dependenre of hwy(T) which is
computed from (40) is compared with experiment in Figure 6. Thus, the
critical temperature T and aiso hwy,(T)) are strongly modified by the
introduction of c. However, the magnon energy spectrum does not strongly
depend on the magnitude of ¢ at moderately high temperatures, as can be
seen from (40) and (42), Therefore, the temperature behaviour of thermo-
dynamic quantities may not be affected by c. The previous result (16) ~ (18)
will still hold. Here Ty in these equations should be replaced by Ty, of (45).
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Figure 5. Temperature dependence of hes 5(T) and hey(T), which are com-
puted from (40) and (42), respectively, Open circles are deduced
from 70 GHz data (Foner and Willlamson 1965).

Similarly, the critical fields hy) (T) and h) (T) are, respectively, given
by (20) and (38), where h. (0) and Ty should be replaced by (2' + 2¢ -
2e¢ - d2y% and (45), respectively.

V. CONCLUSION

We have seen in this paper that the calculated result of M.y, Hyy and hw o (T)
shows a very good agreement with the experimental result. We took not

2J8z[2v (L - 1/28 - 2u;) - (2e+d?) (L -u, + wy )] " but 282[2p (1 - 1/28) (L - 2u,)
- (2 +d¥) (1 “uptwy ) % for the expression of hew, 4 (T). Thesge two expressions
are both accurate because the square root is aceurate up to order of (1/9), as
noted in I, The latter expression shows [1 - ('I‘/'I‘M)“] “  dependence, while

the former shows a slightly different temperature dependence. The S§ term
does not work as the anisotropy energy in the case § = 3 and hence the latter
expression will be more adequate. The derivation of the latter expression for
hesy o (T) from the theoretical point of view may be made by using a more
accurate theory than the present RPA., This remains to be done as a future
problem.
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