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Abstract
Sulci are localized furrows on the surface of soft materials that form by a compression-induced

instability. We unfold this instability by breaking its natural scale and translation invariance, and

compute a limiting bifurcation diagram for sulcfication showing that it is a scale-free, sub-critical

nonlinear instability. In contrast with classical nucleation, sulcification is continuous, occurs in

purely elastic continua and is structurally stable in the limit of vanishing surface energy. During

loading, a sulcus nucleates at a point with an upper critical strain and an essential singularity in the

linearized spectrum. On unloading, it quasi-statically shrinks to a point with a lower critical strain,

explained by breaking of scale symmetry. At intermediate strains the system is linearly stable but

nonlinearly unstable with no energy barrier. Simple experiments confirm the existence of these two

critical strains.
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Sulci are usually seen in combination with complementary protrusions known as gyri

on the surface of the primate brain, but are also seen on the palm of our hand, in our

elbows and knees, in swollen cellular foams (such as bread) and gels, and in geological

strata; a few representative examples are shown in Fig. 1. While observations of sulci

are ancient, their systematic study is fairly recent; an early reference is the reticulation

patterns in photographic gelatin [1], and there has been a small interest in these objects

both experimentally [2–6] and theoretically [3, 7–9], starting with the pioneering work of

Biot [7] over the past 50 years. Despite this, there is no careful analysis of the fundamental

instability and bifurcation that leads to sulci. Here we study the formation of a sulcus in a

bent slab of soft elastomer, e.g. PDMS: as the slab is bent strongly, it pops while forming

a sulcus that is visible in the lower right panel of Fig. 1; releasing the bend causes the

sulcus to vanish continuously, in sharp contrast with familiar hysteretic instabilities that

pop in both directions. We find that sulcification is a fundamentally new kind of nonlinear

subcritical surface instability with no scale and a strongly topological character, yet has no

energetic barrier relative to an entire manifold of linearly stable solutions. We also argue

that sulcification instabilities are relevant to the stability of soft interfaces generally, and

provide one of the first physical examples of the consequences of violating the complementing

condition [12] (during loading) and quasiconvexity at the boundary [6] (during unloading),

keystones in the mathematical theory of elliptic partial differential equations and the calculus

of variations.

To understand the unusual nature of sulcification, we first recall Biot’s calculation for the

linear instability of the surface of an infinite half-space of an incompressible elastomer that

is uniformly stressed laterally. Because the the free surface is the softest part of the system,

and there is no characteristic length scale in the equations of elasticity or in the boundary

conditions, instability first arises when the Rayleigh surface wave speed vanishes. For in-

compressible rubber, Biot [7] showed that this threshold is reached when the compressive

strain exceeds 45.3% [7], at which value, all surface modes are unstable while the fastest

growing one has an infinite wave number. Since every free surface looks like a half-space

locally, Biot’s instability lurks at every free boundary. Finite geometries typically break this

infinite degeneracy and lead to a hierarchy of ordinary buckling instabilities that preempt

the surface instability [19]. However, since Biot’s calculation was limited to a linear analysis

of the problem, it could not address the question of whether the instability was supercritical
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FIG. 1: Examples of sulci in (a) a primate brain [11], (b) the arm of an infant, (c) sliced bread

under lateral compression, and (d) the bent slab of PDMS used in our experiments. The results of

a numerical simulation shown in red capture the form of the sulcus in the gel, as described in the

text, with no adjustable parameters. The scale bar represents 2.3 cm in (a) 5 cm in (b) 2.5 cm in

(c) and 0.33 cm in (d).

or subcritical or its ultimate nonlinear saturation. Since the basic problem is scale free and

translation invariant (the sulcification instability can arise anywhere along the surface), the

nonlinear problem is numerically intractable without explicit regularization and a careful

limiting process requiring that we unfold the sulcus literally and figuratively.

Therefore we consider the bent strip geometry shown in Fig. 1d, and break scale invari-

ance by assuming that a thin skin of a stiff material is attached to the surface of the bent

slab. Furthermore, the curvature maximum at the bottom of the horseshoe where the high-

est strains are achieved naturally breaks translation invariance. For planar deformations,
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the total energy of the system is given by

E (x) =
µ0

2

∫
Ω

(
|∇x|2 − 2

)
d2X +

B0

2

∫
Γ

∣∣∣∣d2x

ds2

∣∣∣∣2 ds.
where x (X) is the deformation of a strip occupying a rectangular material volume Ω ⊂ R2

and subject to the incompressibility constraint det (∇x) = 1, µ0 is the shear modulus of the

incompressible elastomer, B0 is the stiffness of a semi-flexible skin and s is the arc length

parameter of the upper surface Γ ⊂ ∂Ω. Our model corresponds to having a simple neo-

Hookean elastomer free energy for the bulk and a Bernoulli-Euler curvature energy for the

skin. To understand the onset of the sulcification instability, we extremized the energy above

using a custom-built finite element method with continuous strains and a hierarchical mesh

(see Supplementary Information (SI)). We enforced incompressibility and self-contact using

pressure fields and by assuming left-right symmetry about the sulcus. This model has three

relevant length scales: a regularization length lr = 3

√
B0

µ0
, the length of the strip Ls, and its

thickness Ws. We use µ0 and Ls to scale all quantities so that B = B0

µ0L3
s
and the aspect ratio

of the strip Ls/Ws are the only dimensionless parameters.

Our simulations start with an initially flat rubber strip that is bent and quasistatically

compressed between parallel, rigid plates separated by a distance ∆. As the control pa-

rameter ∆ is decreased, compressive strain on the inner surface of the strip increases and

ultimately drives sulcification. To ensure that the scale of the furrow is not numerically

under-resolved, we use a recursively refined finite element mesh near the incipient sulcus to

keep the mesh scale roughly an order of magnitude smaller than lr (See SI, Sec. B). Using

a novel continuation method for variational inequalities (see SI, Sec. C), we computed both

stable and unstable extrema of E (x), and explored the limit B → 0. This yields the central

result of our study, the family of bifurcation diagrams shown in Fig.2(a), where we plot the

minimum height of the slab h as a function of ∆.

Each h−∆ curve is a bifurcation diagram for a different value of B: solid lines represent

linearly stable solutions, while the dotted lines represent linearly unstable solutions. Each

curve follows the characteristic S-shape of a hysteretic transition, associated with a sudden

change in h and formation or relaxation of a finite size sulcus when a critical value of ∆

is passed in loading or unloading. For every value of B, extrema on the top branch have

smooth surfaces, those on the middle branch have a pendant of size lr [see inset a of Fig.

2(a)], and those on the bottom branch have a self-contacting sulcus (insets b and c). As B
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FIG. 2: (a) Bifurcation diagrams for the bent strip geometry shown in Fig. 1 (d), showing the

scaled height h as a function of the scaled compression ∆, the bifurcation parameter for

B ∈
[
10−7 − 10−12

]
(yellow-magenta); solid lines mark stable equilibria and dotted lines mark

unstable equilibria; thick gray lines highlight the asymptotic T-shaped diagram delimited by the

Biot point on the left and the T point on the right. Solutions on the upper stable branches have

smooth surfaces. Insets a-c show the structure (color=strain energy) for typical solutions on the

other branches, rescaled to a fixed size. (b) The upper two curves show compressive strain in

terms of the principal stretch λx at the eventual location of the sulcus X = 0 on the smooth

branch for values of ∆ at the right and left fold points, respectively, for each B. The lowest curve

shows the smallest value 1− λx attained on the surface outside the sulcus for the solution at the

right fold point. The dashed lines correspond to the upper-critical strain predicted by Biot (upper

line), and the new lower-critical strain extrapolation from our simulations (lower line). (c) The

energy barrier ∆E for sulcification as a function of B sampling the solution at even intervals

between the left (bottom curve) and right fold (top curve) points.
5



is decreased, (B ∈ [10−7 − 10−12], lr/Ls ∈ [4.6 × 10−3 − 10−4]), the hysteresis in a typical

loading cycle becomes atypically one-sided as the branch of unstable extrema (dotted lines)

swings up toward the top stable branch and the S-shaped bifurcation diagrams converge to

a master T-shaped diagram traced by the thick gray line with two critical points.

For fixed ∆ and B an unstable solution represents a saddle point in the energy landscape;

its energy relative to the configuration with a flat surface is ∆E = Eu (∆) − Es (∆) where

Eu (∆) and Es (∆) are the energies of the unstable and top, stable branches at ∆ respectively,

is an upper bound on the height of the barrier to nucleating a sulcus. Fig. 2(c) shows ∆E

as a function of B and confirms the convergence of the family of bifurcation diagrams

toward the limiting T-shaped bifurcation diagram, as well as the existence of a nonlinear

surface instability with no energetic barrier over an extended range of strains. We see

that the instability thus differs significantly from traditional first order phase transitions

in that the deformation is continuous, occurs in simple elastic continua and is well defined

in the limit of vanishing surface energy. The presence of metastable region bracketed by

a pair of critical strains along which the stable and unstable solutions coincide as the skin

becomes vanishingly thin naturally explains the discrepancy between Biot’s prediction and

a large number of experiments on creasing and sulcification [4] (and references therein)

over the past half century. Unfolding the instability without breaking translation symmetry

at the surface, e.g. in a swollen, adhered layer of gel, then naturally leads to extreme

sensitivity to imperfections, and a hierarchy of complex subcritical instabilities connecting

Biot’s instability and buckling (see SI, sec. E), and the ability to control sulcification [6].

As B → 0, the sequence of saddle-node fold points encountered during loading converges

to a limiting, infinitely sharp fold point when the surface strain at the lowest point on the

inner surface of the horseshoe, X = 0, reaches a critical value of 45.6% consistent with

Biot’s classical result; in Fig. 2(b) we see the convergence of the critical compressive stain,

1 − λx where λx is the principal stretch of the deformation gradient ∇x along the free

surface, for finite B to Biot’s predicted value at B = 0. A numerical linearized spectral

analysis of the loaded slab also confirmed Biot’s prediction that the Rayleigh surface wave

speed vanishes at X = 0 just as the critical strain is achieved, and corresponds to the

failure of the complementing condition [4, 12], wherein infinitesimal periodic solutions at

the boundary grow at a rate that diverges as the inverse of the wavelength. Over-damped

dynamical simulations–which trace steepest descent contours of the energy landscape–reveal
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that nonlinear effects reorganize these surface waves into a self-similar furrowing process;

after a short transient, depending on B, the growth of a sulcus, which occurs via rolling,

not snapping, is described by the self-similar form xs (X,∆?) +
√
λtv?

(
X/
√
λt
)

where λ

is a dimensional constant and v? is the numerically computed scale-invariant form of the

sulcus [4], and xs (X,∆) is the branch of smooth solutions and ∆? is the value of ∆ at Biot’s

limiting fold point.

The complementary sequence of saddle-node fold points for decreasing B encountered

during unloading are actually “corners” associated with the loss/gain of a self-contacting

sulcus as the unstable surface pendant just closes to form a cavity of fixed size lr. As

these corners converge to the limiting “T-point”, the maximal surface strain outside the

self-contacting region approaches a limiting value of 35.4% that is attained at a sequence of

points converging to X = 0. The convergence to this strain is traced by the lowest curve

in Fig. 2(b) with the asymptote marked by the dashed line. The middle solid curve of Fig.

2(b) is another estimate of the critical strain computed by measuring the strain at X = 0

for a sequence of extrema for corresponding values of ∆ on the top branch. The T-point

critical strain (like the Biot critical strain) is universal for free surfaces of incompressible

materials, consistent with recent experimental observations [4, 6]; however they both change

with applied normal stress (i.e. indentation), for compressible materials [4] etc.

To understand why the T-point bifurcation and the entire unstable manifold are not

captured by linearized analysis, we note that before the sulcus reaches the regularization

scale lr, it shrinks according to the form xs (X,∆) + l (∆)vT (X/l (∆)) where l (∆) ≥ 0

vanishes at the T-point and vT ≈ v? (See insets b and c in Fig. 2(a), and the relative scale

factor of 6.5.) Since the elastic stress is determined by ∇x, this transformation shrinks the

size of the sulcus without altering the local stress balance; therefore all the material and

contact non-linearities remain relevant even for vanishingly small sulci.

We tested our theory with experiments using a commercial Sylgard 180 Elastomer to form

36×26×4mm slabs that were placed between parallel rigid plates attached to linear motors

and compressed in small increments of 200µm in a second, separated by 50s to allow for the

equilibration of the slab. We tracked sulcification optically by imaging the refracted image

of a laser sheet that passed through the slab along its bending axis. When the sulcus formed

it sharply refocused the laser sheet into an almond-shaped caustic pattern surrounding a

dark shadow (SI, sec. D). Fig. 3 (left) shows the evolution of a central raster scan of the
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FIG. 3: A comparison of experimental (left) and computed (right) light intensity patterns cast

by the central section of a laser sheet illuminating the slab’s bending axis; the horizontal axis is

transverse to the sheet and the vertical axis is the step number in a loading-unloading cycle, and

corresponds to changes in ∆ as shown in Fig. 2(a); 4 = formation of sulcus, when a caustic

suddenly forms, 7 = vanishing of sulcus

caustic pattern during a loading cycle (vertical axis) (see SI, sec. D). Analogous ray traced

light distributions for the simulation, using the measured laser profile and assuming left-right

symmetry, the measured system geometry, and B = 10−11 (physically lr ≈ 18µm), are also

shown in Fig. 3(right) for comparison; the numbered red dots correspond to the numbered

red dots in Fig. 2(a). We see that with no free parameters we can capture the one-way

hysteretic transition associated with sulcification.

The emergence of the T and Biot points, and intervening metastable region in the B → 0,

can be understood in terms of a nonlinear generalization of Biot’s half-space problem. All

our simulations show that when a half-space of incompressible elastomer is compressed by

34.5% it has an infinite degeneracy of energy minimizers: the trivial flat configuration, and

a continuous family of isolated sulci which are stable up to translation and rescaling (i.e.

v (X) → lv (X/l) for any number l > 0), i.e., these symmetries are spontaneously broken.

Sulcification exchanges compressive strain for rotation and shear which are ultimately lim-

ited by self-contact. Beyond the lower critical strain, forming a sulcus of size O(l) � 1

releases energy over a region of size O(l2), equivalent to the failure of quasiconvexity at the
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boundary. The spatial variations of ∇x near the compressive strain maximum at X = 0

act as symmetry-breaking perturbations and determine the ultimate scale l of the surface

fold. When the compressive strain is not localized to a point, the size of the sulcus is not

set by the local geometry of ∇x and the domain, and the T bifurcation is sensitive to de-

tails and potential interactions between multiple sulci resulting in reticulation [1, 3], or in a

combination of buckling and sulcification [17, 18] etc. (see SI, sec. E).

More generally, T bifurcations might arise in elastic systems with internal interfaces and

nucleationlike processes in elliptic systems where nonlinearities enter in a scale-free way,

e.g. the formation of cavities, bubbles and cracks [5, 14]. These processes are notoriously

difficult to control, displaying extreme sensitivity to imperfections, and are associated with

a discontinuous transition in the microscopic state characterized by a critical size nucleus;

e.g, a bubble or crack will grow only once it has reached a threshold size. T points should

exist in these systems in the limit when the surface energy vanishes and the size of the

“defect” also vanishes, but the ratio of the two which corresponds to a critical pressure or

stress remains finite.
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Supporting Information for “Unfolding the sulcus”
by E. Hohlfeld and L. Mahadevan

Here we provide more details about our simulation techniques, the full form of the in-

equalities governing the self-contact problem inside the sulcus, our finite element discretiza-

tion, the details of the rough continuation technique and experimental methods together

with further experimental results, and a sketch of some generalizations to multiple buckling,

sulcification and dynamics.

Equations

In this first subsection we present, in detail, the equations we have used to model sulci-

fication. The equations governing the interior of the rubber block, in dimensionless form,

are

∂

∂Xj

{
Sij + pcofij

(
∂x

∂X

)}
= 0

det

(
∂x

∂X

)
= 1

Sij =
∂W

∂Aij
= Aij

where S is the nominal stress tensor, p is the pressure, andW = 1
2
tr
(
ATA− 2

)
is the strain

energy density used in the main text; Aij := ∂xi/∂Xj.

The contact problem for the surface within the fold of the sulcus is governed by a system

of variational inequalities. We have assumed left-right symmetry for simplicity. Using a

coordinate system where the 1-direction is parallel to the initially flat upper surface of the

strip and the 2-direction is the outward normal to this surface, on the right half of the upper

surface the inequalities describing contact are

x1 ≥ 0, π ≥ 0, x1π = 0.

The first inequality expresses the restriction of the upper surface to the right half plane –

by symmetry, this is the same as forbidding self-penetration. The second inequality is dual

to the first and restricts the contact pressure, π, to be positive. The final equality is the

Karush-Kuhn-Tucker condition which states that the contact pressure is zero if the upper
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surface is not in contact. A similar system of inequalities governs the interaction of bottom

surface of the bent strip with the “apparatus” that bends the strip to drive sulcification on the

upper surface. The regularizing bending stiffness term appears in the boundary conditions

for the upper surface as

Si2 = B
∂4xi
∂X4

1

.

The effects of the skin become important to the shape of the sulcus when the sulcus

reaches the size ∼ B
1
3 . Using the above formula and the scaling form of the sulcus at the

T-point we see that

Si2 ∼ B ×B
1
3 ×B−

4
3 ∼ const.

That is, a critical stress must emerge in the limit that the surface energy and “defect” size

simultaneously go to zero as explained in the text, but the T-point stress/strain need not be

the limiting stress computed here which is a function of position and the form of the surface

energy.

Finite element discretization.

To simulate sulcification in the bent strip geometry, we discretized the equations of the

incompressible neo-Hookean model using the finite element method. (See e.g. [8] for a

detailed description the finite element method.) An example mesh for the finest scale sim-

ulations presented in main text is shown in Supplementary Fig. 4. The elements in the

mesh alternatively represent displacement degrees of freedom as tensor products of Her-

mite polynomials or pressure degrees of freedom as quadratic Lagrange polynomials. This

combination allows for continuous strains and stresses, which is important since the sulcifi-

cation and Biot instabilities have characteristic strains; Hermite displacement elements are

also required for compatibility with the surface bending energy. The contact pressure was

described by continuous quadratic Lagrange surface elements. Because left-right symmetry

was assumed, only the right half of the mesh shown was used, resulting in approximately

9000 degrees of freedom for the finest scale simulation in the main text.
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FIG. 4: The mesh used for the simulations in the main body of the paper is recursively refined

on the surface near the sulcus. Displacement variables have continuous derivatives and are

modeled as tensor product Hermite elements. Pressure variables are continuous and modeled as

quadratic Lagrange elements.

Rough continuation method

We solved the discretized equations using rough continuation, which is a variant of pseudo-

arclength continuation adapted for variational inequalities. Pseudo-arclength continuation

is described in [3], it is Newton’s method applied to a system with a control parameter in

which the control parameter is treated as an additional variable on equal footing with the

state variables. Before explaining rough continuation, we will first abstractly describe the

usual pseudo-arclength continuation method.

Let the state of some system be described by the vector x ∈ Rn, let λ be a control

parameter, and suppose the system is governed by the equation

f (x, λ) = 0, (1)

where f ∈ Rn. At fixed λ, a Newton’s method iteration is defined as

xk+1 = xk −Df (xk, λ)−1 (f (xk, λ))

where Df is the n× n derivative matrix of f . Pseudo-arclength continuation computes the

connected component of solutions to (1) whose closure includes some initial point (x0, λ0)

rather that just a single solution for some specific value of λ. An iteration in this method is

xk+1 = xk − PkLk (f (xk, λk))

λk+1 = λk + δk

13



where Lk is any left inverse of the n× (n+ 1) matrix

Ak =

[
Df (xk, λk) ,

∂f

∂λ
(xk, λk)

]
,

Pk is the projection operator

Pk = I− tTk tk

in which tk ∈ Rn+1 is the unit row vector orthogonal to all the rows Ak, and δk is the

λ-component of tk. At the end of N iterations at step r, we make a new initial guess for(
xr+1

1 , λr+1
1

)
by (

xr+1
1 , λr+1

1

)
= (xrN , λ

r
N) + ∆trN

where ∆ is a small, usually adaptively chosen step size. Each iteration of the method

accomplishes an approximate projection back to the solution curve x (λ). The method has

an ambiguity in the sign of ∆. This is fixed by setting trN · tr+1
1 > 0. Pseudo-arclength

continuation inherits the quadratic rate of convergence of Newton’s method whenever the

matrix A (x, λ) is continuous in x and λ.

Both Newton’s method and pseudo-arclength continuation can easily handle constraints

posed as Lagrange multipliers, such as the constant volume constraint of our incompress-

ible strip. Inequality constraints, like contact, pose a problem, however. Linear inequality

constraints can be posed as

(C · (x−R))i ≥ 0, (p)i ≥ 0, (C · (x−R))i (p)i = 0

for a fixed vector R and matrix C where p is the vector of Lagrange multipliers, and

the notation (p)i means the ith component. The active set method can be used to solve

these inequalities at fixed λ. In this method, a set of “active” constraints are guessed and

the inequality constraints in the active set are replaced with equality constraints while the

remaining inequality constraints are ignored. A Newton iteration is then attempted. If

the result of the Newton iteration violates other constraints, these are turned on for the

next iteration, while if a Lagrange multiplier becomes negative, the associated constraint is

turned off in the next iteration.

Rough continuation is a synthesis of the pseudo-arclength continuation method with the

active set method that solves two interrelated problems. First, whenever a constraint turns

on or off, the matrix A must change discontinuously. And second, the sign of ∆ is again
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ambiguous since each new Lagrange multiplier changes the sign of detDf . In practice, these

are only problems at parameter values where a constraint is just turning on or off along the

length of the curve x (λ), which results in a discretization induced corner in the otherwise

smooth curve x (λ). We can solve both problems by simply replacing Newton iterations with

active set iterations in the pseudo-arclength method except when the set of active constraints

is not converging even while the iterations remain bounded. In this case we attempt to guess

the correct “forward” direction on the underlying smooth curve (i.e. without discretization),

and then add a small multiple of tk to (xk, λk) at each iteration so to “nudge” (xk+1, λk+1)

in this direction. Hence the resulting projection step is not always orthogonal to the current

tangent tk, but rather orthogonal to our best guess for the chord connecting (xrN , λ
r
N) and(

xr+1
1 , λr+1

1

)
. This modification drives the iterations away from where a constraint is just

turning on or off so that the active set is fixed and ordinary pseudo-arclength iterations can

resume. In practice the method easily handles large steps in which several constraints turn

on or off at once.

Experiments

This subsection presents details of the experimental data presented in the main text

and additional results from other experiments that help to characterize sulcification. These

additional results include observations of the caustic pattern cast by a fully three dimensional

sulcus, observations of the dynamic formation of a sulcus, and measurements of the force

applied to the confining plates that bend the PDMS slab into a horseshoe shape and drive

sulcification.

As stated in the main text, we compared the predicted shape of the sulcus to the ex-

perimental shape by making detailed a comparison between refracted light patterns from

laser illumination. Supplementary Fig. 5(a) shows ray tracing for a bent slab at maxi-

mum compression. The green lines passing through the cylindrically curved inner surface of

the horseshoe are simply refracted as if by a cylindrical lens, while the green lines passing

through the sulcus are refracted into a dominant caustic pattern surrounding a dark shadow.

Light passing through the ends of the horseshoe is refracted in to a secondary pattern of

caustics (blue lines) and also into a set of whispering gallery modes (red lines).

A corresponding light pattern for a three dimensional sulcus in the experimental geometry
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is shown in Supplementary Fig. 5(b). The sample is illuminated by a laser sheet along its

symmetry axis (vertical axis in the figure). The unrefracted light which missed the sample

can be seen as the bright blue bands in top and bottom extremities of the figure. The red line

in the figure is the raster along which data was sampled at intervals in the compression cycle

to make the Fig. 4 (left) of the main text. The outermost bright blue ring in Supplementary

Fig. 5(b) corresponds to the green caustic pattern in Supplementary Fig. 5(a), the left half

of which was partially obscured by the experimental apparatus. The inner most bright blue

ring in Supplementary Fig. 5(b) corresponds to the blue caustic pattern in Supplementary

Fig. 5(a). The ring-like shape of the caustic patterns is a consequence of edge and three

dimensional effects which cannot be described by our two dimensional model.

Supplementary Fig. 5(c) shows representative observations of the dark shadow cast by a

sulcus in another sample during a loading cycle. In frame (1), the cylindrical curvature of the

bent PDMS strip broadened the laser sheet passing through the sample; the unrefracted sheet

can be seen as the bright band at the top of each frame, and the dark gap immediately below

this band is an artifact of the sample’s edge. When the system achieved the critical strain

for sulcification, a system spanning sulcus appeared and cast the almond shape shadow seen

in frame (2). The shape of the shadow reflects that the sulcus tapered at its upper and lower

extrema. Frame (3) shows the shadow pattern shrank in width and depth during unloading

and suggests that the sulcus retracted along its length while simultaneously becoming more

shallow. Frame (4) shows the initial configuration for the second compression cycle. The

clearly visible dark line running down the center of the image suggests that self-adhesion

may have prevented the sulcus from completely unfolding; this line is also partially visible in

frame (3). We observed that the line gradually filled in over a period hours to days. When

the line was present in the refracted light pattern, we also saw a faint line in the surface of

an unfolded sample when we observed the sample at glancing incidence.

Supplementary Fig. 6 shows how sulcification disturbs a layer of small glass beads dusted

on the surface of another sample. The rolling motion of the forming sulcus plows the beads

out of the self-contacting region, causing them to pile up in the opening of the furrow. When

the sample is unfolded, the depth of the sulcus is made apparent by the width of the depleted

region. We see that the depth of the sulcus changes gradually along its length, tending to

zero at the sample’s edges. This is consistent with the idea that the local strain state sets

the (local) scale of the sulcus.
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Using high speed video, we observed that the sulcus and corresponding caustic pattern

nucleated at point near the center of bent strip and then grew to span the width of the bent

strip. We tried to quantify this nucleation process by analyzing high speed movies of the

refracted light pattern, but the detailed patterns and growth speeds were highly variable.

A typical result is shown in Supplementary Fig. 5(d), in which the concentric circular lines

trace the outline of an observed dark shadow in the refracted light field at 20ms intervals;

color also indicates elapsed time in seconds. The vertical axis is along the length of the

sulcus.

Supplementary Figs. 7(a) and 7(b) show equilibrium and time series measurements of the

force applied to the pair of plates laterally confining the experimental sample. In Supple-

mentary Fig. 7(a), force measurements traced the lower branches of the green lines during

compression until a sulcus formed and the force jumped to a less compressive value; the

upper green curves were traced during unloading and we did not observe a second jump ex-

pected for typical hysteretic processes. Black and red lines are computed from simulations

for B = 10−11, or lr ≈ 18µm. We fitted the vertical scale and offset for the red curve to the

corresponding section of the green curves. Supplementary Fig. 7(b) shows the time series of

force data for the jumps in the green curves of Supplementary Fig. 7(a) on successive com-

pression cycles. Downward motion is an increment to ∆, upward motion is a sulcification

event. We sampled the force reading at 100Hz and then averaged in one second windows to

produce the curves shown in the figure; the error bars are the standard deviation of the force

in an averaging window. There is no apparent correlation between the plate motion (change

in ∆) and the precise moment of sulcification. This is consistent with the local nature of the

sulcification instability. However, each successive event occurs at lower applied load; this

may result from imperfect unfolding of the sulcus due to self-adhesion.

Generalizations: multiple creases, buckling and dynamics

We have argued that nucleation processes, especially in hyperelastic solids with non-

convex strain energies, can be understood via the existence of a scale-symmetry breaking

solution to a scale-free auxiliary problem which is a nonlinear generalization of Biot’s linear
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(a) (b)

(c) (d)

FIG. 5: Fig. 5(a) shows an example of the ray tracing used to compute Fig. 4(right) of the main

text. In Fig. 5(b) a sulcus at maximum compression refracts a laser sheet into a caustic pattern;

the bright bands at the top and bottom are the unrefracted laser sheet that missed the sample.

The red line is the raster along which data were taken make Fig. 4(left) of the main text. Fig.

5(c) shows refracted light from an another sample at four points in a compression cycle: (1) the

initial configuration, (2) the first appearance of a sulcus, (3) as the sulcus quasistatically shrinks

to a point, (4) the initial configuration after one cycle. The residual scar seen in (3) and (4) is also

visible by eye at glancing angle and vanishes over a period of hours to days. Fig. 5(d) shows the

evolving shape of the dark shadow cast by developing sulcus at 20ms intervals (computed by

thresholding frames from a high speed movie); color indicates time in seconds and the vertical

axis is along the sulcus. In contrast with the quasi-static light distributions, a detailed three

dimensional simulation is needed to calibrate these data, but we see that the sulcus rapidly grows

from a point in a few tenths of a second.
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FIG. 6: Small glass beads dusted on another sample are scattered by the formation of sulcus

revealing the self-contacting region when the sample is unfolded as the dark scar crossing the

image. The depth of the sulcus changes gradually, tending to zero near the sample’s edges,

consistent with the idea that the local strain state controls the scale of the sulcus.

(a) (b)

FIG. 7: The green lines in Fig. 7(a) show the measured force-displacement curves for multiple

loading cycles in the experiment discussed in the main text. The red and black lines are computed

from the simulation with the vertical offset and scale of the compression branch (red) as fitting

parameters. Fig. 7(b) shows time traces of the force applied by the compressing plates during the

compressive phase of the loading cycles: downward steps coincide with increments to ∆, upward

steps indicate sulcification events.

problem. In the context of nonlinear elasticity, this problem is to minimize the energy

EA,Y (v) =

∫
FY

W (A +∇v)−W (A) dX

over all functions v ∈ W 1,p
(
FY,Rd

)
where A is identified with the value of ∇x at some

point Y ∈ Ω, FY is all of space if Y is an interior point and FY is a half-space if Y is a point
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on the (smooth) boundary of Ω, p is an exponent related to the growth of W at large A,

and d is the dimension of space. Because of the scale-free nature of this auxiliary problem,

i.e. EA,Y is a homogenous function of degree d in L under the mapping

v (X)→ Lv (X/L) , L > 0,

a minimizer can only exist if∫
FY∩Br(X̃)

W (A +∇v)−W (A) dX ≥ 0, ∀v ∈ C1
0

(
Br

(
X̃
)
,Rd
)
, r > 0, X̃ ∈ FY.

This latter condition embodies both quasiconvexity (when dist
(
X̃, ∂FY

)
> r) and quasi-

convexity at the boundary (otherwise). Quasiconvexity was invented by Morrey and is a

necessary condition for the functional EA,Y to be sequentially weakly lower semicontinuous

on the Sobolev space W 1,p
(
FA,Y,Rd

)
, it is also sufficient for this property when W is con-

tinuous and has polynomial growth in A [1, 2]. Sequential weak lower semicontinuity can be

used to prove a minimizer exists when EA,Y is bounded from below. Quasiconvexity at the

boundary was invented by Ball and Marsden as a necessary condition for a local minimizer in

the topology of C1
(
FA,Y,Rd

)
to be a local minimizer in the comparatively weaker topology

of C0
(
FA,Y,Rd

)
[6]. Here it is needed to ensure that EA,Y is bounded from below.

The relationship between quasiconvexity and quasiconvexity at the boundary for our

auxiliary problem is analogous to the relationship between ellipticity (in the interior) and

satisfaction of the Complementing Condition (i.e. ellipticity at the boundary) for quadratic

energy functionals. These conditions result from linearizing the two quasiconvexity condi-

tions at v = 0.

The existence of a non-trivial minimizer (or minimizing sequence) for EA,Y determines the

critical deformation gradient A for nonlinear instability in the original problem and implies

that one of the quasiconvexity inequalities is saturated. When a non-zero minimizer exists,

say ṽ, there is a continuous family of such minimizers (related by scaling and translation),

each of which solves the Euler-Lagrange equation, and so picking one is the spontaneous

breaking of scale-symmetry in the auxiliary problem. Generally we then expect, as happens

in our simulation, that EA,Y (ṽ) = 0 determines a hyper surface in the space of deformation

gradients A ∈ Rd×d and that EA,Y (ṽ) changes sign as this hypersurface is crossed. This

implies that some form of quasiconvexity is just lost at the critical deformation gradient and

corresponds to the onset of metastability in the original problem because the system develops
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an instability toward nucleation (i.e. the scaling motion of ṽ) while remaining linearly stable.

However, we do not know if the nucleation process is itself sub-critical or super-critical with

respect to the violation of quasiconvexity, nor can we anticipate the nucleation dynamics.

When the variation of strain (and the domain shape at a boundary point) act to stabilize

the nucleation instability, a T-bifurcation results and this bifurcating branch acts as a center

manifold, guiding the evolution of the instability. Because these local variations act to keep

the growing nucleus compact, the bifurcation and dynamics will be insensitive to the geom-

etry at large distances from X0. This is not necessarily true if the variations in strain and

geometry are not stabilizing. In this case the nucleation instability becomes sub-critical with

respect to the violation of quasiconvexity, and we can expect that the nucleation dynamics

will become quite complicated.

As a simple example, consider a uniformly compressed beam of incompressible rubber

such as in the inset to Supplementary Fig. 8; this figure sketches a hypothetical bifurcation

diagram for this system. In this free beam geometry, surface waves on opposite sides of

the beam interact to break Biot’s surface instability into a hierarchy of sub-critical buckling

modes; a qualitative bifurcation diagram for the first buckling mode is traced by the blue

line in the figure. Red crosses mark subsequent linear instabilities in the straight beam

and tend to an accumulation point marking the Biot point. When the beam is compressed

beyond the buckling threshold, a small initial disturbance grows exponentially in time.

Quasiconvexity is still lost at the critical strain of ∼ 35%, but could happen before or

after the onset of buckling, depending on the aspect ratio of the beam. In this geometry,

sulci nucleated at different points can interact with each other and with surface waves

in a dynamical setting. In particular, the inset to Supplementary Fig. 8 suggests that

buckling and sulcification can interact to enhance one another: sulcification lowers the beams

effective bending stiffness while bending increases the local compressive strain which drives

sulcification. The resulting sub-critical instability might be a kind of kinked buckling, but

the precise location of the kinks, and so the precise development of the instability will be

sensitive to imperfections and the initial conditions. In the simplest case when the instability

is initiated by a localized perturbation near the midpoint of the beam and the strain in the

initial state is above ∼ 35%, we expect the instability initially resembles a nucleation process
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governed by the scaling form

x0 (X) + L (t− t0)v

(
X

L (t− t0)

)
with the function L (t) determined by the dynamical law and the time t0 determined by

initial conditions. For example if

∂x

∂t
= −∇ · ∂W

∂A
(∇x) ,

which describes gradient descent, then L (t) = λγtγ with γ = 1/2. If

∂2x

∂t2
= ∇ · ∂W

∂A
(∇x) ,

which describes inertial dynamics, then L (t) has the same form with γ = 1. If the dynamics

are viscoelastic, but local in time, e.g. if the dynamical law has the form

∇ · S
(
∇x,∇∂x

∂t

)
= 0,

where S is the nominal strain, then L (t) = et/λ. The green curve traces the bifurcation

diagram for this process. Since kinked buckling is sub-critical, below the critical strain where

quasiconvexity is lost, a small size sulcus will shrink according to the scaling dynamical law:

x0 (X) + L (t0 − t)v
(

X

L (t0 − t)

)
.

Notice that when the dynamics are either inertial or gradient descent, the sulcus will

nucleate (or vanish) at a finite time, but that for viscoelastic material, the sulcus cannot form

spontaneously (or completely vanish). Assuming that PDMS is governed by a viscoelastic

dynamics, this potentially explains why the metastable portion of the computed bifurcation

diagram is experimentally accessible and the existence of the vertical black line in SI Fig.

2(c)(4).
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