84 research outputs found

    Structural and Mechanistic Studies of Measles Virus Illuminate Paramyxovirus Entry

    Get PDF
    Measles virus (MeV), a member of the paramyxovirus family of enveloped RNA viruses and one of the most infectious viral pathogens identified, accounts for major pediatric morbidity and mortality worldwide although coordinated efforts to achieve global measles control are in place. Target cell entry is mediated by two viral envelope glycoproteins, the attachment (H) and fusion (F) proteins, which form a complex that achieves merger of the envelope with target cell membranes. Despite continually expanding knowledge of the entry strategies employed by enveloped viruses, our molecular insight into the organization of functional paramyxovirus fusion complexes and the mechanisms by which the receptor binding by the attachment protein triggers the required conformational rearrangements of the fusion protein remain incomplete. Recently reported crystal structures of the MeV attachment protein in complex with its cellular receptors CD46 or SLAM and newly developed functional assays have now illuminated some of the fundamental principles that govern cell entry by this archetype member of the paramyxovirus family. Here, we review these advances in our molecular understanding of MeV entry in the context of diverse entry strategies employed by other members of the paramyxovirus family

    Paramyxovirus Fusion and Entry: Multiple Paths to a Common End

    Get PDF
    The paramyxovirus family contains many common human pathogenic viruses, including measles, mumps, the parainfluenza viruses, respiratory syncytial virus, human metapneumovirus, and the zoonotic henipaviruses, Hendra and Nipah. While the expression of a type 1 fusion protein and a type 2 attachment protein is common to all paramyxoviruses, there is considerable variation in viral attachment, the activation and triggering of the fusion protein, and the process of viral entry. In this review, we discuss recent advances in the understanding of paramyxovirus F protein-mediated membrane fusion, an essential process in viral infectivity. We also review the role of the other surface glycoproteins in receptor binding and viral entry, and the implications for viral infection. Throughout, we concentrate on the commonalities and differences in fusion triggering and viral entry among the members of the family. Finally, we highlight key unanswered questions and how further studies can identify novel targets for the development of therapeutic treatments against these human pathogens

    Recombinant Wild-Type and Edmonston Strain Measles Viruses Bearing Heterologous H Proteins: Role of H Protein in Cell Fusion and Host Cell Specificity

    No full text
    Wild-type measles virus (MV) isolated from B95a cells has a restricted host cell specificity and hardly replicates in Vero cells, whereas the laboratory strain Edmonston (Ed) replicates in a variety of cell types including Vero cells. To investigate the role of H protein in the differential MV host cell specificity and cell fusion activity, H proteins of wild-type MV (IC-B) and Ed were coexpressed with the F protein in Vero cells. Cell-cell fusion occurred in Vero cells when Ed H protein, but not IC-B H protein, was expressed. To analyze the role of H protein in the context of viral infection, a recombinant IC-B virus bearing Ed H protein (IC/Ed-H) and a recombinant Ed virus bearing IC-B H protein (Ed/IC-H) were generated from cloned cDNAs. IC/Ed-H replicated efficiently in Vero cells and induced small syncytia in Vero cells, indicating that Ed H protein conferred replication ability in Vero cells on IC/Ed-H. On the other hand, Ed/IC-H also replicated well in Vero cells and induced small syncytia, although parental Ed induced large syncytia in Vero cells. These results indicated that an MV protein(s) other than H protein was likely involved in determining cell fusion and host cell specificity of MV in the case of our recombinants. SLAM (CDw150), a recently identified cellular receptor for wild-type MV, was not expressed in Vero cells, and a monoclonal antibody against CD46, a cellular receptor for Ed, did not block replication or syncytium formation of Ed/IC-H in Vero cells. It is therefore suggested that Ed/IC-H entered Vero cells through another cellular receptor
    • …
    corecore