63 research outputs found

    Privacy-Preserving Polynomial Computing Over Distributed Data

    Full text link
    In this letter, we delve into a scenario where a user aims to compute polynomial functions using their own data as well as data obtained from distributed sources. To accomplish this, the user enlists the assistance of NN distributed workers, thereby defining a problem we refer to as privacy-preserving polynomial computing over distributed data. To address this challenge, we propose an approach founded upon Lagrange encoding. Our method not only possesses the ability to withstand the presence of stragglers and byzantine workers but also ensures the preservation of security. Specifically, even if a coalition of XX workers collude, they are unable to acquire any knowledge pertaining to the data originating from the distributed sources or the user

    Multiplexed Streaming Codes for Messages With Different Decoding Delays in Channel with Burst and Random Erasures

    Full text link
    In a real-time transmission scenario, messages are transmitted through a channel that is subject to packet loss. The destination must recover the messages within the required deadline. In this paper, we consider a setup where two different types of messages with distinct decoding deadlines are transmitted through a channel that can introduce burst erasures of a length at most BB, or NN random erasures. The message with a short decoding deadline TuT_u is referred to as an urgent message, while the other one with a decoding deadline TvT_v (Tv>TuT_v > T_u) is referred to as a less urgent message. We propose a merging method to encode two message streams of different urgency levels into a single flow. We consider the scenario where Tv>Tu+BT_v > T_u + B. We establish that any coding strategy based on this merging approach has a closed-form upper limit on its achievable sum rate. Moreover, we present explicit constructions within a finite field that scales quadratically with the imposed delay, ensuring adherence to the upper bound. In a given parameter configuration, we rigorously demonstrate that the sum rate of our proposed streaming codes consistently surpasses that of separate encoding, which serves as a baseline for comparison

    Excitation of semiconductor nanowires using individually addressable micro-LED arrays

    Get PDF
    Optical pumping of nanowire emitters, embedded in polymeric waveguides is achieved using a micro-LED array at 410 nm. The micro-LED-on-CMOS chip allows for individual pixel control and therefore parallel pumping of multiple emitters simultaneously. The nanowires are integrated on-chip using high-accuracy transfer-printing and laser lithography

    Scalable optical excitation and modulation of semiconductor nanowire emitters

    Get PDF
    We show that individually addressable micro-LED-on-CMOS arrays can be used as scalable optical excitation sources for arrayed semiconductor nanowire devices. This approach is used to demonstrate optical modulation at MHz rates of heterogeneously integrated nanowire-emitters

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions

    METhodological RadiomICs Score (METRICS): a quality scoring tool for radiomics research endorsed by EuSoMII

    Get PDF
    Purpose: To propose a new quality scoring tool, METhodological RadiomICs Score (METRICS), to assess and improve research quality of radiomics studies. Methods: We conducted an online modified Delphi study with a group of international experts. It was performed in three consecutive stages: Stage#1, item preparation; Stage#2, panel discussion among EuSoMII Auditing Group members to identify the items to be voted; and Stage#3, four rounds of the modified Delphi exercise by panelists to determine the items eligible for the METRICS and their weights. The consensus threshold was 75%. Based on the median ranks derived from expert panel opinion and their rank-sum based conversion to importance scores, the category and item weights were calculated. Result: In total, 59 panelists from 19 countries participated in selection and ranking of the items and categories. Final METRICS tool included 30 items within 9 categories. According to their weights, the categories were in descending order of importance: study design, imaging data, image processing and feature extraction, metrics and comparison, testing, feature processing, preparation for modeling, segmentation, and open science. A web application and a repository were developed to streamline the calculation of the METRICS score and to collect feedback from the radiomics community. Conclusion: In this work, we developed a scoring tool for assessing the methodological quality of the radiomics research, with a large international panel and a modified Delphi protocol. With its conditional format to cover methodological variations, it provides a well-constructed framework for the key methodological concepts to assess the quality of radiomic research papers. Critical relevance statement: A quality assessment tool, METhodological RadiomICs Score (METRICS), is made available by a large group of international domain experts, with transparent methodology, aiming at evaluating and improving research quality in radiomics and machine learning. Key points: • A methodological scoring tool, METRICS, was developed for assessing the quality of radiomics research, with a large international expert panel and a modified Delphi protocol. • The proposed scoring tool presents expert opinion-based importance weights of categories and items with a transparent methodology for the first time. • METRICS accounts for varying use cases, from handcrafted radiomics to entirely deep learning-based pipelines. • A web application has been developed to help with the calculation of the METRICS score (https://metricsscore.github.io/metrics/METRICS.html) and a repository created to collect feedback from the radiomics community (https://github.com/metricsscore/metrics). Graphical Abstract: [Figure not available: see fulltext.

    Anti-reflection for monocrystalline silicon from diamond-like carbon films deposited by magnetron sputtering

    No full text
    In this work, diamond-like carbon (DLC) films used as anti-reflective coatings for monocrystalline silicon were deposited by magnetron sputtering for potential application in solar cells. The microstructural and optical properties of the films were investigated as a function of substrate temperature over a wide range during deposition. It showed that, when the substrate temperature increased from RT to 800 °C, the hybridized structures of the DLC films accordingly changed associated with a significant variation of refractive index between2.22 and 1.64 at a wavelength of 550 nm. Three types of coating systems, namely single-, three- and five-layer films on monocrystalline silicon substrates, were designed based on the anti-reflection principle and fabricated in terms of the relationships of refractive index and deposition rate with substrate temperature. In particular, a well-designed three-layer film, of which the refractive index gradually changed along the thickness, that is 1.8, 1.9 and 2.0, respectively, was successfully deposited at one step on monocrystalline silicon substrates by adjusting substrate temperature and deposition time, and featured a broadband anti-reflective characteristic with low average reflectivity of 8.7% at a wide solar spectrum of 400–1100 nm. This work demonstrates that the DLC film has a promising application potential as broadband anti-reflective coatings in silicon-based solar cells
    corecore