128 research outputs found

    Optical Hall conductivity of systems with gapped spectral nodes

    Full text link
    We calculate the optical Hall conductivity within the Kubo formalism for systems with gapped spectral nodes, where the latter have a power-law dispersion with exponent n. The optical conductivity is proportional to n and there is a characteristic logarithmic singularity as the frequency approaches the gap energy. The optical Hall conductivity is almost unaffected by thermal fluctuations and disorder for n=1, whereas disorder has a stronger effect on transport properties if n=2

    Study of J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar

    Full text link
    The branching ratios and Angular distributions for J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar are measured using BESII 58 million J/psi.Comment: 11 pages, 5 figure

    Search for the Rare Decays J/Psi --> Ds- e+ nu_e, J/Psi --> D- e+ nu_e, and J/Psi --> D0bar e+ e-

    Full text link
    We report on a search for the decays J/Psi --> Ds- e+ nu_e + c.c., J/Psi --> D- e+ nu_e + c.c., and J/Psi --> D0bar e+ e- + c.c. in a sample of 5.8 * 10^7 J/Psi events collected with the BESII detector at the BEPC. No excess of signal above background is observed, and 90% confidence level upper limits on the branching fractions are set: B(J/Psi --> Ds- e+ nu_e + c.c.)<4.8*10^-5, B(J/Psi --> D- e+ nu_e + c.c.) D0bar e+ e- + c.c.)<1.1*10^-5Comment: 10 pages, 4 figure

    Diagnosis of obstructive coronary artery disease using computed tomography angiography in patients with stable chest pain depending on clinical probability and in clinically important subgroups: Meta-analysis of individual patient data

    Get PDF
    Objective To determine whether coronary computed tomography angiography (CTA) should be performed in patients with any clinical probability of coronary artery disease (CAD), and whether the diagnostic performance differs between subgroups of patients. Design Prospectively designed meta-analysis of individual patient data from prospective diagnostic accuracy studies. Data sources Medline, Embase, and Web of Science for published studies. Unpublished studies were identified via direct contact with participating investigators. Eligibility criteria for selecting studies Prospective diagnostic accuracy studies that compared coronary CTA with coronary angiography as the reference standard, using at least a 50% diameter reduction as a cutoff value for obstructive CAD. All patients needed to have a clinical indication for coronary angiography due to suspected CAD, and both tests had to be performed in all patients. Results had to be provided using 2 72 or 3 72 cross tabulations for the comparison of CTA with coronary angiography. Primary outcomes were the positive and negative predictive values of CTA as a function of clinical pretest probability of obstructive CAD, analysed by a generalised linear mixed model; calculations were performed including and excluding non-diagnostic CTA results. The no-treat/treat threshold model was used to determine the range of appropriate pretest probabilities for CTA. The threshold model was based on obtained post-test probabilities of less than 15% in case of negative CTA and above 50% in case of positive CTA. Sex, angina pectoris type, age, and number of computed tomography detector rows were used as clinical variables to analyse the diagnostic performance in relevant subgroups. Results Individual patient data from 5332 patients from 65 prospective diagnostic accuracy studies were retrieved. For a pretest probability range of 7-67%, the treat threshold of more than 50% and the no-treat threshold of less than 15% post-test probability were obtained using CTA. At a pretest probability of 7%, the positive predictive value of CTA was 50.9% (95% confidence interval 43.3% to 57.7%) and the negative predictive value of CTA was 97.8% (96.4% to 98.7%); corresponding values at a pretest probability of 67% were 82.7% (78.3% to 86.2%) and 85.0% (80.2% to 88.9%), respectively. The overall sensitivity of CTA was 95.2% (92.6% to 96.9%) and the specificity was 79.2% (74.9% to 82.9%). CTA using more than 64 detector rows was associated with a higher empirical sensitivity than CTA using up to 64 rows (93.4% v 86.5%, P=0.002) and specificity (84.4% v 72.6%, P&lt;0.001). The area under the receiver-operating-characteristic curve for CTA was 0.897 (0.889 to 0.906), and the diagnostic performance of CTA was slightly lower in women than in with men (area under the curve 0.874 (0.858 to 0.890) v 0.907 (0.897 to 0.916), P&lt;0.001). The diagnostic performance of CTA was slightly lower in patients older than 75 (0.864 (0.834 to 0.894), P=0.018 v all other age groups) and was not significantly influenced by angina pectoris type (typical angina 0.895 (0.873 to 0.917), atypical angina 0.898 (0.884 to 0.913), non-anginal chest pain 0.884 (0.870 to 0.899), other chest discomfort 0.915 (0.897 to 0.934)). Conclusions In a no-treat/treat threshold model, the diagnosis of obstructive CAD using coronary CTA in patients with stable chest pain was most accurate when the clinical pretest probability was between 7% and 67%. Performance of CTA was not influenced by the angina pectoris type and was slightly higher in men and lower in older patients. Systematic review registration PROSPERO CRD42012002780

    Precison Measurements of the Mass, the Widths of ψ(3770)\psi(3770) Resonance and the Cross Section σ[e+eψ(3770)]\sigma[e^+e^-\to \psi(3770)] at Ecm=3.7724E_{\rm cm}=3.7724 GeV

    Full text link
    By analyzing the RR values measured at 68 energy points in the energy region between 3.650 and 3.872 GeV reported in our previous paper, we have precisely measured the mass, the total width, the leptonic width and the leptonic decay branching fraction of the ψ(3770)\psi(3770) to be Mψ(3770)=3772.4±0.4±0.3{M}_{\psi(3770)}=3772.4 \pm 0.4 \pm 0.3 MeV, Γψ(3770)tot=28.6±1.2±0.2\Gamma_{\psi(3770)}^{\rm tot} = 28.6 \pm 1.2 \pm 0.2 MeV, Γψ(3770)ee=279±11±13\Gamma_{\psi(3770)}^{ee} = 279 \pm 11 \pm 13 eV and B[ψ(3770)e+e]=(0.98±0.04±0.04)×105B[\psi(3770)\to e^+e^-]=(0.98\pm 0.04\pm 0.04)\times 10^{-5}, respectively, which result in the observed cross section σobs[e+eψ(3770)]=7.25±0.27±0.34\sigma^{\rm obs}[e^+e^-\to \psi(3770)]=7.25\pm 0.27 \pm 0.34 nb at s=3772.4\sqrt{s}=3772.4 MeV. We have also measured Ruds=2.121±0.023±0.084R_{\rm uds}=2.121\pm 0.023 \pm 0.084 for the continuum light hadron production in the region from 3.650 to 3.872 GeV.Comment: 5 pages, 2 figure

    Measurements of the cross sections for e+ehadronse^+e^- \to {\rm hadrons} at 3.650, 3.6648, 3.773 GeV and the branching fraction for ψ(3770)nonDDˉ\psi(3770)\to {\rm non-}D\bar D

    Get PDF
    Using the BES-II detector at the BEPC Collider, we measured the lowest order cross sections and the RR values (R=σe+ehadrons0/σe+eμ+μ0R=\sigma^0_{e^+e^- \to {\rm hadrons}}/\sigma^0_{e^+e^- \to \mu^+\mu^-}) for inclusive hadronic event production at the center-of-mass energies of 3.650 GeV, 3.6648 GeV and 3.773 GeV. The results lead to Rˉuds=2.224±0.019±0.089\bar R_{uds}=2.224\pm 0.019\pm 0.089 which is the average of these measured at 3.650 GeV and 3.6648 GeV, and R=3.793±0.037±0.190R=3.793\pm 0.037 \pm 0.190 at s=3.773\sqrt{s}=3.773 GeV. We determined the lowest order cross section for ψ(3770)\psi(3770) production to be σψ(3770)B=(9.575±0.256±0.813) nb\sigma^{\rm B}_{\psi(3770)} = (9.575\pm 0.256 \pm 0.813)~{\rm nb} at 3.773 GeV, the branching fractions for ψ(3770)\psi(3770) decays to be BF(ψ(3770)D0Dˉ0)=(48.9±1.2±3.8)BF(\psi(3770) \to D^0\bar D^0)=(48.9 \pm 1.2 \pm 3.8)%, BF(ψ(3770)D+D)=(35.0±1.1±3.3)BF(\psi(3770) \to D^+ D^-)=(35.0 \pm 1.1 \pm 3.3)% and BF(ψ(3770)DDˉ)=(83.9±1.6±5.7)BF(\psi(3770) \to D\bar{D})=(83.9 \pm 1.6 \pm 5.7)%, which result in the total non-DDˉD\bar D branching fraction of ψ(3770)\psi(3770) decay to be BF(ψ(3770)nonDDˉ)=(16.1±1.6±5.7)BF(\psi(3770) \to {\rm non}-D\bar D)=(16.1 \pm 1.6 \pm 5.7)%.Comment: 11 pages, 5 figure

    Evidence for kappa Meson Production in J/psi -> bar{K}^*(892)^0K^+pi^- Process

    Get PDF
    Based on 58 million BESII J/psi events, the bar{K}^*(892)^0K^+pi^- channel in K^+K^-pi^+pi^- is studied. A clear low mass enhancement in the invariant mass spectrum of K^+pi^- is observed. The low mass enhancement does not come from background of other J/psi decay channels, nor from phase space. Two independent partial wave analyses have been performed. Both analyses favor that the low mass enhancement is the kappa, an isospinor scalar resonant state. The average mass and width of the kappa in the two analyses are 878 +- 23^{+64}_{-55} MeV/c^2 and 499 +- 52^{+55}_{-87} MeV/c^2, respectively, corresponding to a pole at (841 +- 30^{+81}_{-73}) - i(309 +- 45^{+48}_{-72}) MeV/c^2.Comment: 17 pages, 5 figure

    Partial wave analyses of J/psi to gamma pi^+ pi^- and gamma pi^0 pi^0

    Full text link
    Results are presented on J/psi radiative decays to pi^+pi^- and pi^0pi^0 based on a sample of 58M J/psi events taken with the BESII detector. Partial wave analyses are carried out using the relativistic covariant tensor amplitude method in the 1.0 to 2.3 GeV/c^2 pipi mass range. There are conspicuous peaks due to the f_2(1270) and two 0^++ states in the 1.45 and 1.75 GeV/c^2 mass regions. The first 0^++ state has a mass of 1466\pm 6\pm 20 MeV/c^2, a width of 108^{+14}_{-11}\pm 25 MeV/c^2, and a branching fraction B(J/psi \to \gamma f_0(1500) \to\gamma \pi^+\pi^-) = (0.67\pm0.02\pm0.30) \times 10^{-4}. Spin 0 is strongly preferred over spin 2. The second 0^++ state peaks at 1765^{+4}_{-3}\pm 13 MeV/c^2 with a width of 145\pm8\pm69 MeV/c^2. If this 0^++ is interpreted as coming from f_0(1710), the ratio of its branching fractions to pipi and K\bar K is 0.41^{+0.11}_{-0.17}.Comment: 9 pages, 6 figure

    Measurement of \chi_cJ--> K+K-K+K-

    Full text link
    Using 14M psi(2S) events taken with the BES-II detector, chi_cJ-->K+K-K+K- decays are studied. For the four-kaon final state, the branching fractions are B(chi_c0,1,2 -->K+K-K+K-)=(3.48\pm 0.23\pm 0.47)\times 10^{-3}, (0.70\pm 0.13\pm 0.10)\times 10^{-3}, and (2.17\pm 0.20\pm 0.31)\times 10^{-3}. For the \phi K+K- final state, the branching fractions, which are measured for the first time, are B(chi_c0,1,2-->\phi K+K-)=(1.03\pm 0.22\pm 0.15)\times 10^{-3}, (0.46\pm 0.16\pm 0.06)\times 10^{-3}, and (1.67\pm 0.26\pm 0.24)\times 10^{-4}. For the \phi\phi final state, B(chi_{c0,2}-->\phi\phi)=(0.94\pm 0.21\pm 0.13)\times 10^{-3} and (1.70\pm 0.30\pm 0.25)\times 10^{-3}.Comment: 7 pages, 7 figure
    corecore