50 research outputs found

    Targeted Ablation of Distal Cerebrospinal Fluid-Contacting Nucleus Alleviates Renal Fibrosis in Chronic Kidney Disease

    Get PDF
    The potential function of distal cerebrospinal fluid-contacting nucleus (dCSF-CNs) in chronic kidney disease (CKD) development is poorly understood. We hypothesized that dCSF-CNs might affect the renin-angiotensin system (RAS) in kidney injury progression, with dCSF-CNs ablation potentially alleviating local RAS and renal fibrosis in rats after five-sixths nephrectomy (5/6Nx). Part of rats were randomly administered artificial cerebrospinal fluid (aCSF) intracerebroventricularly (icv), followed by 5/6Nx or sham operation; and other part of rats were administered Cholera toxin B subunit conjugated with saporin (CB-SAP) for dCSF-CNs lesion before 5/6Nx. The effect of CB-SAP on dCSF-CNs ablation was confirmed by double immunofluorescence staining. RAS component, NOX2 and c-fos levels in the subfornical organ (SFO), hypothalamic paraventricular nucleus (PVN) and hippocampus, as well as tyrosine hydroxylase (TH) and c-fos positive cells in rostral ventrolateral medulla (RVLM) were assessed. Next, the levels of RAS components (angiotensinogen [AGT], angiotensin-converting enzyme [ACE], Ang II type 1 receptor [AT1R], angiotensin-converting enzyme 2 [ACE2], and Mas receptor), NADPH oxidases (NOX2 and catalase), inflammatory cytokines (monocyte chemotactic protein 1 [MCP-1] and IL-6), and fibrotic factors (fibronectin and collagen I) were assessed. Less CB-labeled neurons were found in dCSF-CNs of CB-SAP-treated rats compared with 5/6Nx animals. Meanwhile, CB-SAP downregulated AGT, Ang II, AT1R, NOX2, catalase, MCP-1, IL-6, fibronectin, and collagen I, and upregulated ACE2 and Mas receptor, compared with CKD rats. More TH and c-fos positive cells were found in RVLM of 5/6Nx rats but the number decreased after dCSF-CNs ablation. Targeted dCSF-CNs ablation could alleviate renal inflammation and fibrosis in chronic kidney injury by inhibiting cerebral and renal RAS/NADPH oxidase

    Type-I-IFN-Stimulated Gene TRIM5γ Inhibits HBV Replication by Promoting HBx Degradation

    Get PDF
    To understand the molecular mechanisms that mediate the anti-hepatitis B virus (HBV) effect of interferon (IFN) therapy, we conduct highthroughput bimolecular fluorescence complementation screening to identify potential physical interactions between the HBx protein and 145 IFNstimulated genes (ISGs). Seven HBx-interacting ISGs have consistent and significant inhibitory effects on HBV replication, among which TRIM5g suppresses HBV replication by promoting K48-linked ubiquitination and degradation of the HBx protein on the K95 ubiquitin site. The B-Box domain of TRIM5g under overexpression conditions is sufficient to trigger HBx degradation and is responsible both for interacting with HBx and recruiting TRIM31, which is an ubiquitin ligase that triggers HBx ubiquitination. High expression levels of TRIM5g in IFN-a-treated HBV patients might indicate a better therapeutic effect. Thus, our studies identify a crucial role for TRIM5g and TRIM31 in promoting HBx degradation, which may facilitate the development of therapeutic agents for the treatment of patients with IFN-resistant HBV infection

    Hepatitis B virus–induced imbalance of inflammatory and antiviral signaling by differential phosphorylation of STAT1 in human monocytes

    Get PDF
    It is not clear how hepatitis B virus (HBV) modulates host immunity during chronic infection. In addition to the key mediators of inflammatory response in viral infection, monocytes also express a high-level IFN-stimulated gene, CH25H, upon response to IFN-a exerting an antiviral effect. In this study, the mechanism by which HBV manipulates IFN signaling in human monocytes was investigated. We observed that monocytes from chronic hepatitis B patients express lower levels of IFN signaling/stimulated genes and higher levels of inflammatory cytokines compared with healthy donors. HBV induces monocyte production of inflammatory cytokines via TLR2/MyD88/NF-kB signaling and STAT1-Ser727 phosphorylation and inhibits IFN-a–induced stat1, stat2, and ch25h expression through the inhibition of STAT1-Tyr701 phosphorylation and in an IL-10–dependent, partially autocrine manner. Further, we found that enhancement of STAT1 activity with a small molecule (2-NP) rescued HBV-mediated inhibition of IFN signaling and counteracted the induction of inflammatory cytokines. In conclusion, HBV contributes to the monocyte inflammatory response but inhibits their IFN-a/b responsiveness to impair antiviral innate immunity. These effects are mediated via differential phosphorylation of Tyr701 and Ser727 of STAT1

    Global existence and temporal decay for the 3D compressible Hall-magnetohydrodynamic system

    Get PDF
    In this paper, we are concerned with the 3D compressible Hall-magnetohydrodynamic system in the whole space. We prove the global existence and temporal decay rates of the solutions to the system when the initial data are close to a stable equilibrium state by using a pure energy method

    Hyper-IL-15 suppresses metastatic and autochthonous liver cancer by promoting tumour-specific CD8+ T cell responses

    Get PDF
    Liver cancer has a very dismal prognosis due to lack of effective therapy. Here, we studied the therapeutic effects of hyper-interleukin15 (hyper-IL-15), which is composed of IL-15 and the sushi domain of the IL-15 receptor α chain, on metastatic and autochthonous liver cancers

    Anomalous papillary muscle insertion into the mitral valve leaflet in hypertrophic obstructive cardiomyopathy: a lip nevus sign in echocardiography

    Get PDF
    BackgroundAnomalous papillary muscle (APM) insertion into the mitral valve leaflet is rare but clinically important in hypertrophic obstructive cardiomyopathy (HOCM). In this study, we report the detection rate of APM insertion into the mitral valve using preoperative imaging modalities and the surgical outcomes of the patients.MethodsBy retrospectively reviewing the clinical records of patients with HOCM who underwent surgical treatment by a single operation group at our center from January 2020 to June 2023, patients with APM insertion into the mitral valve leaflet were identified. Baseline data, image characteristics, and surgical outcomes were analyzed.ResultsThe incidence of APM insertion into the mitral valve leaflet was 5.1% (8/157). The insertion site was located at A3 in six cases, which was more common than at A2 (n = 2). Preoperative echocardiography was used to identify two patients (25%) with APM insertion. We observed a particular echocardiographic feature for APM in HOCM patients, which was noted as a “lip nevus sign”, with a higher detection rate (62.5%). All patients successfully underwent septal myectomy with concomitant APM excision or mitral valve replacement via the transaortic (n = 5) or transmitral (n = 3) approach. The mean age was 49.0 ± 17.4 years and seven patients (87.5%) were female. Interventricular septum thickness (17.0 mm vs. 13.3 mm, P = 0.012) and left ventricular outflow gradient (117.5 mmHg vs. 7.5 mmHg, P = 0.012) were significantly decreased after surgery. Residual outflow obstruction, systolic anterior motion, and ≥3+ mitral regurgitation were negative. During the follow-up of 26.2 ± 12.2 months, there were no reported operations, adverse events, mitral regurgitation aggravations, recurrences of outflow obstruction, or instances of SAM.ConclusionsPapillary muscles inserted into the mitral valve leaflet are a subtype of subvalvular malformation in HOCM that requires surgical correction. The lip nevus sign on echocardiography is a characteristic of APM insertion in HOCM and may improve the preoperative detection rate. Adequate myectomy with anomalous papillary muscle excision has achieved good results in reducing the outflow gradient and eliminating mitral regurgitation, with good outcomes at short-to-intermediate follow-up
    corecore