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Abstract

Background & Aims—Liver cancer has a very dismal prognosis due to lack of effective 

therapy. Here, we studied the therapeutic effects of hyper-interleukin15 (hyper-IL-15), which is 

composed of IL-15 and the sushi domain of the IL-15 receptor α chain, on metastatic and 

autochthonous liver cancers.

Methods—Liver metastatic tumour models were established by intraportally injecting syngeneic 

mice with murine CT26 colon carcinoma cells or B16-OVA melanoma cells. Primary 

hepatocellular carcinoma (HCC) was induced by diethylnitrosamine (DEN). A hydrodynamics-

based gene delivery method was used to achieve sustained hyper-IL-15 expression in the liver.

Results—Liver gene delivery of hyper-IL-15 robustly expanded CD8+ T and NK cells, leading 

to a long-term (more than 40 days) accumulation of CD8+ T cells in vivo, especially in the liver. 

Hyper-IL-15 treatment exerted remarkable therapeutic effects on well-established liver metastatic 

tumours and even on DEN-induced autochthonous HCC, and these effects were abolished by 

depletion of CD8+ T cells but not NK cells. Hyper-IL-15 triggered IL-12 and interferon-γ 

production and reduced the expression of co-inhibitory molecules on dendritic cells in the liver. 

Adoptive transfer of T cell receptor (TCR) transgenic OT-1 cells showed that hyper-IL-15 

preferentially expanded tumour-specific CD8+ T cells and promoted their interferon-γ synthesis 

and cytotoxicity.
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Conclusions—Liver delivery of hyper-IL-15 provides an effective therapy against well-

established metastatic and autochthonous liver cancers in mouse models by preferentially 

expanding tumour-specific CD8+ T cells and promoting their anti-tumour effects.
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Introduction

Hepatocellular carcinoma (HCC) has a very poor prognosis [1,2]. Traditional therapies for 

HCC such as surgery are limited by tumour size and intrahepatic metastases [3]. The only 

clinically approved chemotherapy drug for advanced HCC is sorafenib, which shows only 

modest efficacy, improving survival of patients by just 3 months [3,4]. Therefore, there is an 

urgent need to develop more effective therapeutic strategies for liver cancer. Accumulating 

evidence shows that immunotherapy might become a potential therapeutic option for 

patients with HCC [5]. Adoptive transfer of autologous T lymphocytes, stimulated by anti-

CD3 and IL-2, into patients with HCC significantly improved post-surgical recurrence-free 

survival [6]. Recently, Sangro et al. showed attractive evidence for the application of 

CTLA-4 targeted immunotherapy in patients with HCC [7].

Administration of cytokines to enhance immune responses has proven to be an effective 

immunotherapy for some cancers [8]. IL-2 has been used to treat metastatic melanoma 

patients [9,10]. IL-15, a cytokine that shares many features with IL-2, including the use of 

two receptor subunits (IL-2Rβ and IL-2Rγ) and similar intracellular signalling, also shows 

anti-tumour activity in mice [10]. IL-15 promotes proliferation and effector function of 

CD8+ T cells, natural killer (NK) cells and NKT cells [10]. More attractively, IL-15 shows 

no obvious adverse effects in vivo, such as T-cell activation–induced cell death or expansion 

of T regulatory cells, compared to IL-2 [10]. Trans-presentation of IL-15 by IL-15Rα on 

activated monocytes and dendritic cells to the IL-2R/IL-15Rβ and γ chain on effector T, B, 

and NK cells is thought to be the primary mechanism for IL-15 action [11,12]. Recent 

reports have shown that administration of preformed complexes of IL-15 with its soluble 

receptor IL-15Rα (amino acids 1–78) enhanced the bioavailability of IL-15 by about 50-fold 

and showed elevated tumour-eliminating effects in vivo [13–16]. This complex led to an 

extended half-life of IL-15 in vivo and robust proliferation of antigen-experienced CD44hi 

CD8+ T cells, NK cells and NKT cells [13–16]. Importantly, the soluble fusion protein of 

IL-15Rα (amino acids 1–78) and IL-15, linked by a flexible pep-tide, exhibited enhanced 

activity relative to non-covalently associated IL-15 and sIL-15Rα in vitro and in vivo 

[17,18].

Considerable efforts have been mounted towards testing the anti-tumour activity of the 

IL-15/IL-15Rα-Fc complex or fusion protein in several cancer models in mice 

[13,15,18,19]. However, its therapeutic benefit for HCC has not been clearly defined. The 

idea of targeting the IL-15 pathway to treat liver cancer is further supported by the finding 

that higher IL-15 protein levels in peritumoural liver tissues are significantly associated with 

better prognosis in patients with resected HCC [20]. Chang et al. recently reported the 
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therapeutic use of AAV8-delivered IL-15 superagon-ist (IL-15/IL-15RαS) in a mouse model 

of metastatic HCC [21]. However, this treatment was only shown to be effective when 

administered at very early time points (3 days after intrasplenic injection of tumour cells), 

limiting the translational relevance. The effects of a IL-15 superagonist on more established, 

clinically relevant tumours, such as autochthonous HCC models [22], remains unknown.

In this study, we used the hydrodynamics-based gene delivery method to express a fusion 

protein of soluble IL-15Rα, fused with IL-15 and human IgG1-Fc (designated as hyper-

IL-15 hereafter) in vivo to treat liver cancers. We report that ectopic hyper-IL-15 expression 

had significant therapeutic effects on both well-established metastatic and autochthonous 

liver cancers in mice, and these effects were primarily mediated by CD8+ T cells. 

Mechanistically, hyper-IL-15 could preferentially expand tumour-specific CD8+ T cells and 

enhance their cytotoxic activity. Our results have significant implications for the application 

of hyper-IL-15 to immunotherapeutic intervention of metastatic or autochthonous liver 

cancers in humans.

Materials and methods

Experimental animals

Female C57BL/6 (B6) and BALB/c mice (aged 6–8 weeks) were obtained from Weitong 

Lihua (Beijing, China). OT-1/Thy1.1 mice were obtained by backcrossing B6 Thy1.1 and 

OT-1 mice purchased from Jackson Laboratory. All mice were maintained in a specific 

pathogen-free barrier facility at the Institute of Biophysics. All animal studies were 

approved by the Institutional Laboratory Animal Care and Use Committee.

Antibodies and reagents

The fluorescently-labelled anti-mouse NK1.1, CD3, DX5, CD4, CD8, B7-H1, FoxP3, 

CD25, CD11b, CD11c, CD90.1 (Thy1.1), and IFN-γ antibodies, brefeldin A solution and 

Cytofix/Cytoperm™ kit were purchased from eBioscience (San Diego, CA). Rabbit anti-

asialo GM1 (a-GM1) antiserum and control rabbit serum were purchased from Wako Pure 

Chemical (Tokyo, Japan). CD8+ T cell depletion antibody (α-CD8, clone TIB210), NK1.1+ 

cell depletion antibody (α-NK1.1, clone PK136) and rat anti-KLH mAb (rat IgG2a) were 

purified from ascites of nude mice. H-2Kb tetramer SIINFEKL-PE was purchased from 

Beckman Coulter.

Vector construction, recombinant protein preparation

Construction of the hIgG-Fc (Fc), mouse hyper-IL-15-Fc (hyper-IL-15), IL-15 and IL-15-Fc 

expression cassettes is shown in Supplementary Fig. 1A. The proteins were prepared by 

transient transfection of 293T cells and purified by protein G columns.

Hydrodynamic-based gene delivery

For each mouse, 10 μg DNA was diluted in 2.0 ml of PBS (0.1 ml/g body weight) and 

injected into the tail vein using a 27-gauge needle over 5 to 8 s. In vivo gene expression was 

confirmed by detecting the protein in the serum by ELISA.
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Metastatic or autochthonous liver cancer models

Metastatic liver tumours were established by injecting 1 × 105 CT26 or 3 × 105 B16-OVA 

tumour cells in 150 μl PBS solution into mice through the portal vein using a 32 G needle. 

To induce autochthonous liver cancers, 15-day-old male C57BL/6 mice were injected 

intraperitoneally (i.p.) with 25 mg/kg DEN (Sigma, St. Louis) dissolved in DMSO. Visible 

liver nodules were counted and nodule size was measured with calipers by measuring two 

perpendicular.

Flow cytometry

Splenocytes and intra-hepatic lymphocytes (IHLs) were prepared as described [23]. Cells 

were pre-incubated with anti-CD16/32 mAb and then stained with surface or intracellular 

markers. Flow cytometry was performed on FACSCalibur (BD Bioscience, San Jose, CA) 

and data were analysed with FlowJo software (TreeStar, Ashland, OR).

In vivo cytotoxicity assay

The in vivo cytotoxicity assay was performed as described in the Supplementary Materials 

and methods and as described previously [24].

Histology and immunohistochemistry

The paraffin embedded tissues were sliced (5 μm) and stained with haematoxy-lin-eosin. 

Frozen sections (5 μm) were stained with rat anti-CD8α (eBioscience, San Diego, CA) or rat 

IgG2a control antibody (eBioscience, San Diego, CA) and then developed with the Polink-1 

HRP detection system for rat primary antibodies (ZSGB-BIO, Beijing). The slides were 

scanned with a Leica SCN 400 (Leica Camera, Allendale, NJ) and images were analysed by 

using SlidePath Gateway (Leica Microsystems Inc.).

Statistics

Statistical analysis was performed using the two-tailed, unpaired Student’s t test (*p<0.05; 

**p<0.01; ***p<0.001; ns, non-significant) using GraphPad Prism 5 software (GraphPad 

Software, La Jolla, CA).

Results

Hyper-IL-15 robustly expands CD8+ T cells and NK cells in the liver

To evaluate the therapeutic effect of hyper-IL-15 on liver cancer, we used hydrodynamics-

based gene delivery, which achieves high expression of plasmid DNA by hepatocytes [25]. 

After hydrodynamic injection of the hyper-IL-15 plasmid, the level of hyper-IL-15 in the 

plasma reached a peak at day 1 and then decreased over time, reaching low levels after 

around 2 weeks (Supplementary Fig. 2A). At day 4 after hydrodynamic injection, the total 

number of intrahepatic lymphocytes (IHLs) increased up to 70-fold in hyper-IL-15 treated 

mice compared with the Fc-treated control group. The absolute numbers of CD8+ T cells 

and NK cells were 200-fold higher in the hyper-IL-15 group than that in the control group, 

while CD4+ T cells were just slightly increased in hyper-IL-15-treated mice. 

Correspondingly, the percentages of CD8+ T cells and NK cells were significantly 
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increased, and the percentages of CD4+ T cells were dramatically decreased after hyper-

IL-15 delivery (Fig. 1A). Similar results were obtained in the spleen (Supplementary Fig. 

3A). In contrast, expression of IL-15 alone only slightly increased the number of CD8+ T 

cells and NK cells in the liver (Supplementary Fig. 3B). Intravenous injection of 

recombinant hyper-IL-15 protein also significantly increased the number of CD8+ T cells 

and NK cells in liver (Supplementary Fig. 3C). Although hyper-IL-15 treatment induced 

robust accumulation of CD8+ T cells and NK cells in the liver, no obvious liver damage was 

observed in hyper-IL-15-treated mice compared to control mice as indicated by the alanine 

aminotransferase (ALT) level in the plasma (Supplementary Fig. 2B).

Next we determined the dynamics of CD8+ T cells and NK cells expanded by hyper-IL-15. 

As shown in Fig. 1B, the CD8+ T cell increase, induced by hyper-IL-15 treatment, persisted 

much longer than that of NK cells in the peripheral blood. At day 40 after the hydrodynamic 

injection, the percentage and number of CD8+ T cells were still 2-fold higher in the livers of 

hyper-IL-15-treated mice than in control mice (Fig. 1C). These results demonstrate that 

hyper-IL-15 markedly expanded CD8+ T cells and NK cells in vivo, leading to a long-term 

accumulation of CD8+ T cells in the liver.

Hyper-IL-15 exerts remarkable anti-tumour effects on liver metastatic tumours

To study the therapeutic effect of hyper-IL-15 on metastatic liver tumours, we intraportally 

injected CT26 colon carcinoma cells or B16-OVA melanoma cells into syngeneic mice. 

Disseminated metastatic tumours in the liver were palpable at day 10 and became extremely 

serious by day 15 (Supplementary Fig. 4A). We treated the tumour-bearing mice with hyper-

IL-15 or Fc control plasmids by hydrodynamic injection at day 10 and evaluated the 

therapeutic effect at day 18 after tumour inoculation. As shown in Fig. 2A and 

Supplementary Fig. 4B, most mice in the Fc control group showed serious disseminated 

tumours that had merged together, while only a few scattered tumour nodules were observed 

in livers of hyper-IL-15-treated mice. The liver weight varied between individual mice in the 

Fc control group, with livers weighing 1.5 and 2.8 times more on average than those of 

hyper-IL-15-treated mice in the CT26 and B16-OVA tumour models, respectively. Thus, 

hyper-IL-15 showed impressive therapeutic effect on well-established metastatic tumours in 

the liver.

CD8+ T cells mediate the therapeutic effect of hyper-IL-15

Similar to the results in tumour-free mice, hyper-IL-15 treatment dramatically increased 

both CD8+ T cells and NK cells in the livers of tumour bearing mice detected by flow 

cytometry and immunohistochemical staining (Supplementary Fig. 5). Next, we examined 

the contribution of each cell population to the suppression of metastatic liver tumours by 

depleting CD8+ T cells or NK cells respectively with antibodies during hyper-IL-15 

treatment. The specific depletion effects were verified by flow cytometry analysis of 

PBMCs (Supplementary Fig. 6). As shown in Fig. 2B, systemic depletion of CD8+ T cells 

completely abrogated the therapeutic effects of hyper-IL-15 on metastatic liver CT26 

carcinomas, whereas depletion of NK cells had minimal effect. Similar results were obtained 

in the B16-OVA tumour model (Fig. 2C). These results demonstrate that liver expression of 

hyper-IL-15 dramatically suppressed growth of liver metastatic tumours, and was mediated 
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by CD8+ T cells, while expansion of NK cells had negligible effects on the anti-tumour 

efficacy of hyper-IL-15.

Hyper-IL-15 enhances the cytotoxic function of tumour-specific CD8+ T cells

Tumour-specific T cells, which are the major effector cells against tumours, are usually 

rendered tolerant during tumour development [26]. Here, we examined the effects of hyper-

IL-15 on tumour-specific CD8+ T cell responses. B6 mice were adoptively transferred with 

naive thy1.1+ OT-1 T cells and then intraportally injected with B16-OVA melanoma cells. 

After 10 days, the mice with palpable metastatic tumours in the liver were treated by 

hydrodynamic injection of hyper-IL-15 or Fc control vector. Compared with the Fc vector, 

hyper-IL-15 treatment dramatically increased CD8+ T cells by 18.7 and 19.9 fold 

respectively and, to a greater extent, increased adoptively transferred OT-1 cells by 62.2 and 

82.4 fold in liver and spleen, respectively, in B16-OVA tumour-bearing mice (Fig. 3A). 

Correspondingly, the percentage of OT-1 cells in CD8+ T cells was 3.2 and 4.4 fold higher 

in the liver and spleen of hyper-IL-15-treated mice compared to Fc-treated control mice 

(Fig. 3A). This result suggests that hyper-IL-15 preferentially expanded tumour-specific 

CD8+ T cells.

To analyse the cytotoxicity of tumour-specific CD8+ T cells in vivo, the hyper-IL-15 or Fc-

treated tumour-bearing mice were intravenously injected with a 1:1 mixture of spleen cells, 

pulsed with either OVA-257 peptide (SIINFEKL) or control HBV-S208 peptide 

(ILSPFLPL), which was labelled with carboxyfluorescein succinimidyl ester (CFSE) in high 

or low concentrations respectively, to serve as target cells. Splenocytes were collected 6 h 

thereafter to analyse CFSE-labelled cells for cytotoxicity determination. As shown in Fig. 

3B, the effective elimination of OVA peptide-loaded cells was observed in hyper-IL-15 

treated mice but not in the control group. The mean specific lysis in the hyper-IL-15 treated 

group was 80%, significantly higher than the observed 4% in the Fc-treated group. Thus, 

hyper-IL-15 markedly promoted the cytotoxic activity of tumour-specific CD8+ T cells in 

vivo.

To further analyse the effect of hyper-IL-15 on the function of tumour-specific CD8+ T 

cells, we isolated OT-1 splenocytes from naive or tumour-bearing mice 4 days after hyper-

IL-15 treatment and treated them with OVA-257 peptide ex vivo. The IFN-γ producing OT-1 

T cells were detected by flow cytometry. As shown in Fig. 3C, thy1.1+ OT-1 T cells from 

tumour naive mice could be stimulated by OVA peptide to produce IFN-γ, and hyper-IL-15 

treatment markedly increased the IFN-γ producing OT-1 T cells in the spleen of naive mice. 

However, OT-1 cells from the Fc-treated tumour-bearing mice did not react to OVA peptide 

stimulation, and the percentage of IFN-γ+ cells in OT-1 splenocytes was only 5% in 

comparison with 25% in naive mice. This result indicated that tumour-specific CD8+ T cells 

were functionally deficient or tolerant in mice with metastatic liver tumours. Impressively, 

OT-1 T cells from hyper-IL-15-treated tumour-bearing mice responded well to OVA peptide 

stimulation, with 45% of spleen OT-1 cells producing IFN-γ, which was similar to the 47% 

of IFN-γ+ OT-1 T cells from hyper-IL-15-treated naive mice (Fig. 3C). Thus, tumour-

specific OT-1 cells in tumour-bearing mice were fully activated after hyper-IL-15 treatment.
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These results demonstrate that hyper-IL-15 treatment not only expanded the number of 

tumour-specific CD8+ T cells, but also greatly enhanced their anti-tumour activity in mice 

with liver metastatic tumours.

Hyper-IL-15 treatment triggers pro-inflammatory cytokine production and significantly 
increases the ratio of CD8+ T cells vs. Treg cells in the liver

We also tested whether hyper-IL-15 treatment triggered other pro-inflammatory cytokines 

important for tumour elimination. As shown in Fig. 3D, hyper-IL-15 induced robust IL-12 

and IFN-γ, but not IL-10, in the plasma of tumour bearing mice 4 days after treatment. In 

parallel with tumour growth, expression of the co-inhibitory molecule B7-H1 on dendritic 

cells (CD45+CD11b+CD11c+) was upregulated, and regulatory CD4+ T cells (Treg cells) 

accumulated in the liver (Supplementary Fig. 4C). Hyper-IL-15 treatment could 

downregulate the expression of B7-H1 on dendritic cells (Fig 3E). Although hyper-IL-15 

treatment expanded intrahepatic T cells in general, including CD4+ T cells, the percentage of 

Treg cells in the CD4+ T cell population and the overall number of Treg cells was not 

significantly increased in liver (Fig 3E). Correspondingly, the ratio of CD8+ T cells, which 

underwent strong expansion, vs. regulatory T cells, which did not, was dramatically 

increased by hyper-IL-15 treatment (Fig 3E). These data suggested that hyper-IL-15 

treatment activated anti-tumour immune pathways without inducing immune suppressive 

pathways in liver.

Hyper-IL-15 shows significant therapeutic effect on autochthonous hepatocellular 
carcinoma

We further studied the potential of hyper-IL-15 for clinical application by using the 

diethylnitrosamine (DEN)-induced autochthonous hepatocarcinogenesis model in which 

malignant cells mostly arise from normal indigenous hepatocytes and grow slowly in 

immunocompetent mice. Male mice were intraperitoneally injected with DEN 15 days after 

birth and HCC developed within 8 months. Starting at 8.5 months, the mice were given two 

rounds of hydrodynamic injections of hyper-IL-15 or Fc plasmids with an interval of two 

weeks. Two months after the second treatment, all mice underwent hepatectomy. Mice 

treated with Fc exhibited massive multi-nodular HCCs, while mice treated with hyper-IL-15 

had only a few small, sporadic tumour nodules (Fig. 4A). The mean largest tumour volume 

and the total volume of all tumours per mouse were respectively about 80-fold and 100-fold 

smaller in hyper-IL-15-treated mice than that in Fc-treated mice (Fig. 4B). Depletion of 

CD8+ T cells by antibody administration during treatment partially diminished the 

therapeutic effects of hyper-IL-15 (Fig. 4A–C). Tumour nodules in the liver were confirmed 

by histochemical staining (Fig. 4C).

Taken together, our studies demonstrate that liver delivery of hyper-IL-15 has significant 

therapeutic effects on both metastatic and autochthonous liver cancers.

Discussion

We demonstrated here that liver gene delivery of hyper-IL-15 not only dramatically 

inhibited the growth of well-established liver metastatic tumours, but also exerted a 
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remarkable therapeutic effect on primary hepatocellular carcinoma. The anti-tumour effect 

of hyper-IL-15 was mediated mainly by CD8+ T cells, but not by NK cells. We found that 

hyper-IL-15 could enormously expand CD8+ T cells in vivo, cause long-term accumulation 

of CD8+ T cells in the liver, and markedly promote functions of tumour-specific CD8+ T 

cells.

Although hyper-IL-15 tremendously expanded both CD8+ T cells and NK cells in vivo, the 

results of lymphocyte deletion showed that the anti-tumour effects of hyper-IL-15 were 

dependent on CD8+ T cells rather than NK cells. This was consistent with the more durable 

accumulation of CD8+ T cells relative to NK cells in the liver. Chang et al. recently reported 

that the therapeutic effect of AAV-delivered hyper-IL-15 on metastatic murine liver cancer 

was mediated by NK cells rather than T cells [21]. In their study, mice were treated with 

AAV8/IL-15-IL-15RαS three days after tumour inoculation. At this time point, the tumours 

might not be well-established in the liver. In addition, the AAV itself may have triggered 

specific pathways to induce innate and adaptive immune responses against both viruses and 

tumours [27], complicating the interpretation of these experiments with respect to the effects 

of IL-15/IL-15Rα. Here, we show the impressive therapeutic effect of hyper-IL-15 to well-

established tumours in the liver 10 days after transplantation. Most importantly, we 

demonstrate that hyper-IL-15 dramatically inhibited the growth of well-developed DEN-

induced primary HCC. To our knowledge, this is the first immunotherapy, which shows 

significant therapeutic effects on DEN-induced autochthonous HCC.

Liver is recognized as a tolerogenic organ [28]. T cells that recognize antigens in the liver 

are usually exposed to inhibitory ligands, including B7-H1, and to immunosuppressive 

cytokines, including TGF-β1 and IL-10, which are expressed by liver antigen presenting 

cells such as dendritic cells, Kupffer cells, liver sinusoidal endothelial cells (LSECs) and 

even hepatocytes [29,30]. Thus, the indigenous tolerogenic hepatic environment potentially 

hinders HCC-directed immunotherapy. It was reported that the IL-15/IL-15Rα complex or 

fusion protein promoted the destruction of established pancreatic tumours by reviving 

tumour-resident CD8+ T cells and eliminated well-established myeloma by stimulating 

CD8+ T cells to produce IFN-γ [15,19]. In our liver metastatic B16-OVA melanoma model, 

tumour-specific OT-1 cells failed to respond to OVA peptide stimulation ex vivo, suggesting 

a tolerant state. Hyper-IL-15 therapy preferentially expanded tumour-specific OT-1 cells, 

and rescued their cytokine production ability and cytotoxic activity. We also found that 

hyper-IL-15 treatment triggered the production of IFN-γ and IL-12, but not IL-10, in tumour 

bearing mice. The expression of the co-inhibitory molecule B7-H1 on dendritic cells in the 

liver was also lower in the hyper-IL-15 treated mice compared to controls. These results 

demonstrated that, in the tolerogenic liver environment, hyper-IL-15 therapy could rescue 

tolerant tumour-specific CD8+ T cells to eliminate tumours.

In conclusion, our study showed that liver delivery of hyper-IL-15 had a remarkable 

therapeutic effect on liver metastatic tumours and even on primary HCCs by enhancing 

tumour-specific CD8+ T cell responses. Our encouraging results warrant future exploration 

of the use of hyper-IL-15 for treating metastatic and spontaneous liver cancers in humans.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Liver gene delivery of hyper-IL-15 expands both CD8+ T cells and NK cells in vivo
C57BL/6 mice were hydrodynamically injected with 10 μg of hyper-IL-15 or Fc plasmid at 

day 0. (A) Intrahepatic lymphocytes (IHLs) were isolated for flow cytometry analysis at day 

4. Numbers of total IHLs (left), cell numbers (middle) and percentages (right) of CD8+ T 

cells (CD3+CD8+), CD4+ T cells (CD3+CD4+), NK cells (CD3−NK1.1+) in IHLs are shown. 

Three independent experiments with similar results were performed. (B) Percentages of 

CD8+ T cells (left) and NK cells (right) in PBMCs at indicated time points. (C) Cell 

numbers (left) and percentage (right) of CD8+ T cells in IHLs in each group at day 40. 

Graphs represent the mean ± SEM of 3–5 mice each group in A, B and C.
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Fig. 2. Therapeutic effect of hyper-IL-15 on liver metastatic tumours
BALB/c or C57BL/6 mice were intraportally injected with CT26 tumour cells or B16-OVA 

melanoma cells and then hydrodynamically injected with hyper-IL-15 or Fc plasmids at day 

10. (A) Representative photographs and liver weight with disseminated metastatic CT26 

tumours (upper panels) and B16-OVA tumours (bottom panels) at day 18 are shown. Three 

independent experiments with similar results were performed. (B–C) Some tumour-bearing 

mice were injected i.p with 200 μg CD8+ T cells (a-CD8) or NK cells (a-GM1or a-NK1.1) 

depletion antibodies 1 day before and 4 days after hydrodynamical injection of the hyper-

IL-15 plasmid. Representative photographs and liver weight with disseminated metastatic 

CT26 tumours (B) and B16-OVA tumours (C) at day 18 are shown. Two independent 

experiments with similar results were performed. Each dot represents one individual mouse 

and graphs represent the mean of 5–10 mice each group.
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Fig. 3. Hyper-IL-15 preferentially expands tumour-specific CD8+ T cells and enhances their 
cytotoxic function
Thy1.2+ C57BL/6 mice were adoptively transferred with purified thy1.1+ OT-1 T cells one 

day before they were intraportally injected with B16-OVA cells, followed by hydrodynamic 

injection with hyper-IL-15 or Fc plasmids 10 days after tumour inoculation. (A) The 

absolute number and percentage of total CD8+ T cells, number of thy1.1+ OT-1 T cells and 

percentage of OT-1 cells in total CD8+ T cells in the spleen and IHLs are shown. (B) Mice 

were i.v. injected with a 1:1 mixture of CFSE-labelled spleen cells, pulsed with OVA-257 

peptide (right peak) or control HBV-S208 peptide (left peak) 4 days after hyper-IL-15 

treatment. After 6 h, splenocytes were isolated and CFSE profiles were analysed. The 

numbers above the peaks indicate percentages of OVA-257 peptide-pulsed cells among the 

total CFSE-labelled target cells. Specific lysis of peptide pulsed target cells was calculated. 

Graphs represent the mean ± SEM of 3–4 mice each group in A and B. (C) Four days after 

hyper-IL-15 or Fc treatment, splenocytes were harvested and stimulated ex vivo with 1 

ng/ml OVA-257 peptide for 2 days and IFN-γ+ -producing cells were detected by 

intracellular staining. Representative plots of IFN-γ+ OT-1 cell cells are shown (left). 

Percentages of IFN-γ+ OT-1 cell were statistically analysed (right). Each dot represents one 

individual mouse and graphs represent the mean of 3 mice each group. (D–E) C57BL/6 mice 

were intraportally injected with B16-OVA melanoma cells and then hydrodynamically 

injected with hyper-IL-15 or Fc plasmids at day 10. At day 14, cytokines IL-12, IFN-γ and 
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IL-10 in the serum were detected by Luminex assay (D). B7-H1 expression on dendritic 

cells, percentage and number of Treg cells and CD8+ T cells vs. Treg cells in the liver at day 

14 are shown (E). Two independent experiments with similar results were performed.
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Fig. 4. Therapeutic effect of hyper-IL-15 on DEN-induced autochthonous hepatocellular 
carcinoma
Male C57BL/6 mice were i.p. injected with DEN 15 days after birth, and hydrodynamically 

injected with hyper-IL-15 or control Fc plasmids at 8.5 and 9 months. Some hyper-IL-15-

treated mice were i.p. injected with 200 μg of anti-CD8 antibody 1 day before and 4 days 

after each hydrody-namic injection. At 11 moths, all mice underwent hepatectomy. (A) 

Representative photograph of livers with HCCs. (B) Size of the largest tumour (left) and 

total tumour volume (right) in each liver were measured and statistically analysed. Each dot 

represents one individual mouse and graphs represent the mean of 4–10 mice each group. 

(C) Representative H&E staining of liver tissue sections before or after treatment. Black 

dash lines indicate border of the tumour nodules.
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