34 research outputs found

    Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: The role of p38 MAPK and ROS

    Get PDF
    Due to narrow therapeutic window of cancer therapeutic agents and the development of resistance against these agents, there is a need to discover novel agents to treat breast cancer. The antitumor activities of thymoquinone (TQ), a compound isolated from Nigella sativa oil, were investigated in breast carcinoma in vitro and in vivo. Cell responses after TQ treatment were assessed by using different assays including MTT assay, annexin V-propidium iodide staining, Mitosox staining and Western blot. The antitumor effect was studied by breast tumor xenograft mouse model, and the tumor tissues were examined by histology and immunohistochemistry. The level of antioxidant enzymes/molecules in mouse liver tissues was measured by commercial kits. Here, we show that TQ induced p38 phosphorylation and ROS production in breast cancer cells. These inductions were found to be responsible for TQ’s anti-proliferative and pro-apoptotic effects. Moreover, TQ-induced ROS production regulated p38 phosphorylation but not vice versa. TQ treatment was found to suppress the tumor growth and this effect was further enhanced by combination with doxorubicin. TQ also inhibited the protein expression of anti-apoptotic genes, such as XIAP, survivin, Bcl-xL and Bcl-2, in breast cancer cells and breast tumor xenograft. Reduced Ki67 and increased TUNEL staining were observed in TQ-treated tumors. TQ was also found to increase the level of catalase, superoxide dismutase and glutathione in mouse liver tissues. Overall, our results demonstrated that the antiproliferative and pro-apoptotic effects of TQ in breast cancer are mediated through p38 phosphorylation via ROS generation

    Chlorogenic Acid Stimulates Glucose Transport in Skeletal Muscle via AMPK Activation: A Contributor to the Beneficial Effects of Coffee on Diabetes

    Get PDF
    Chlorogenic acid (CGA) has been shown to delay intestinal glucose absorption and inhibit gluconeogenesis. Our aim was to investigate the role of CGA in the regulation of glucose transport in skeletal muscle isolated from db/db mice and L6 skeletal muscle cells. Oral glucose tolerance test was performed on db/db mice treated with CGA and soleus muscle was isolated for 2-deoxyglucose transport study. 2DG transport was also examined in L6 myotubes with or without inhibitors such as wortmannin or compound c. AMPK was knocked down with AMPKα1/2 siRNA to study its effect on CGA-stimulated glucose transport. GLUT 4 translocation, phosphorylation of AMPK and Akt, AMPK activity, and association of IRS-1 and PI3K were investigated in the presence of CGA. In db/db mice, a significant decrease in fasting blood sugar was observed 10 minutes after the intraperitoneal administration of 250 mg/kg CGA and the effect persisted for another 30 minutes after the glucose challenge. Besides, CGA stimulated and enhanced both basal and insulin-mediated 2DG transports in soleus muscle. In L6 myotubes, CGA caused a dose- and time-dependent increase in glucose transport. Compound c and AMPKα1/2 siRNA abrogated the CGA-stimulated glucose transport. Consistent with these results, CGA was found to phosphorylate AMPK and ACC, consistent with the result of increased AMPK activities. CGA did not appear to enhance association of IRS-1 with p85. However, we observed activation of Akt by CGA. These parallel activations in turn increased translocation of GLUT 4 to plasma membrane. At 2 mmol/l, CGA did not cause any significant changes in viability or proliferation of L6 myotubes. Our data demonstrated for the first time that CGA stimulates glucose transport in skeletal muscle via the activation of AMPK. It appears that CGA may contribute to the beneficial effects of coffee on Type 2 diabetes mellitus

    Molecular pathways leading to loss of skeletal muscle mass in cancer cachexia can findings from animal models be translated to humans?

    Get PDF
    Background: Cachexia is a multi-factorial, systemic syndrome that especially affects patients with cancer of the gastrointestinal tract, and leads to reduced treatment response, survival and quality of life. The most important clinical feature of cachexia is the excessive wasting of skeletal muscle mass. Currently, an effective treatment is still lacking and the search for therapeutic targets continues. Even though a substantial number of animal studies have contributed to a better understanding of the underlying mechanisms of the loss of skeletal muscle mass, subsequent clinical trials of potential new drugs have not yet yielded any effective treatment for cancer cachexia. Therefore, we questioned to which degree findings from animal studies can be translated to humans in clinical practice and research. Discussion: A substantial amount of animal studies on the molecular mechanisms of muscle wasting in cancer cachexia has been conducted in recent years. This extensive review of the literature showed that most of their observations could not be consistently reproduced in studies on human skeletal muscle samples. However, studies on human material are scarce and limited in patient numbers and homogeneity. Therefore, their results have to be interpreted critically. Summary: More research is needed on human tissue samples to clarify the signaling pathways that lead to skeletal muscle loss, and to confirm pre-selected drug targets from animal models in clinical trials. In addition, improved diagnostic tools and standardized clinical criteria for cancer cachexia are needed to conduct standardized, randomized controlled trials of potential drug candidates in the future

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Rumex dentatus Inhibits Cell Proliferation, Arrests Cell Cycle, and Induces Apoptosis in MDA-MB-231 Cells through Suppression of the NF-κB Pathway

    No full text
    Background:Rumex dentatus, commonly known as tooth docked, is widely used in traditional system of medicines. Although it is well reported for its biological activities and medicinal value, only few studies have been carried out to assess its anticancer potential.Purpose: This study seeks to evaluate the anticancer activity of leaf extracts of R. dentatus against breast cancer MDA-MB-231 cell line, a triple negative human breast cancer cell line with invasive properties and to identify the molecular targets underlying its mechanism of action.Methods: Cytotoxicity of plant extracts was determined against breast cancer cells, using the MTT assay. Flow cytometry was performed to analyze the changes in cell cycle and apoptotic effect, if any. Cells were also studied for their wound healing and invasive potential as well as for Western blotting of apoptotic genes and nuclear factor-kappaB (NF-κB) pathway.Results: The results revealed that R. dentatus methanol (RM) and chloroform (RC) extracts of R. dentatus had the highest inhibition of cell proliferation in a concentration- and time-dependent manner. This inhibitory effect was found to be linked to arrest of cell cycle at the G0/G1 phase, along with induction of apoptosis and accumulation in the sub-G1 phase. Moreover, it was shown that both RM and RC inhibited the proliferation of the malignant cells and induced apoptosis by repressing the activation of NF-κB and its subsequent transcripts, Bcl-xl, Bcl-2, Cyclin D1, survivin, and XIAP. Apoptosis was also confirmed in the cells as suggested by caspase-3 detection. RM and RC also abrogated IκBa phosphorylation in the malignant cells as well as reduced the invasive and migratory capabilities of these cells.Conclusion: Our findings suggest that the methanol and chloroform extracts of R. dentatus may have anti-cancer compounds that are potentially useful in the treatment of human breast cancer

    Morphological analyses of SGC-7901 cells.

    No full text
    <p><b>A.</b> treatment with SPRC, SAC, PAG, PAG+SPRC and paclitaxel liposome (10 uM) in 24 h for determination of apoptotic changes analyzed under a fluorescence microscope. <b>B.</b> Analysis of apoptotic cells by Flow cytometric assay. <b>C.</b> Cell cycle distribution. Markers on pictures indicate: 1, Control. 2, SPRC 10 uM. 3. SAC 10 uM. 4. PAG 10 uM. 5. SPRC+PAG, each 10 uM. 6. Paclitaxel liposome 10 uM.</p

    Effects of SPRC, SAC, PAG, PAG+SPRC and paclitaxel liposome on CSE protein expressions in SGC-7901 cells (A,B,C); gastric tumors of nude mice (D,E,F).

    No full text
    <p>For <b>A</b>, Lane 1, control group; Lane 2, paclitaxel liposome 10 uM; Lane 3, SPRC 1 uM; Lane 4, SPRC 10 uM; Lane 5, SAC 10 uM; Lane 6, Control group; Lane 7, SPRC 10 uM; Lane 8, PAG 10 uM; Lane 9, PAG+SPRC 10 uM. For <b>D</b>: Lane 1, control; Lane 2, paclitaxel liposome 10 mg/kg; Lane 3, SPRC 50 mg/kg; Lane 4, SPRC 100 mg/kg; Lane 5, SAC 100 mg/kg; Lane 6, control; Lane 7, SPRC 100 mg/kg; Lane 8, PAG 100 mg/kg; Lane 9, PAG+SPRC 100 mg/kg. Relative intensity is calculated by comparing with the intensity of GAPDH using densitometry (shown in the graphs on the right). * represent significant difference between control vs. SPRC, SAC and paclitaxel liposome treated groups (p<0.05). <sup>#</sup> represents significant difference between SPRC 10 uM vs. SPRC+PAG group. Figure <b>G</b> shows CSE activity (µmol/g) in the gastric cancer of all groups. Figure <b>H</b> shows H<sub>2</sub>S levels (µM) in cell culture media. Figure <b>I</b> show plasma H<sub>2</sub>S levels in gastric tumors of nude mice of different groups.</p

    Growth inhibition of SGC-7901 cells under SPRC treatment.

    No full text
    <p><b>A.</b> Dose-response study of the effects of SPRC on growth inhibition of SGC-7901 cells. <b>B.</b> Effects of SPRC, SAC, PAG, PAG+SPRC and paclitaxel liposome on viability of SGC-7901 cells. <b>C.</b> Effects of SPRC, SAC, PAG, PAG+SPRC and paclitaxel liposome on colony formation in SGC-7901 cells. <b>D.</b> Effects of SPRC, SAC and paclitaxel liposome on migration ability of SGC-7901 cells. Differential cell migration ability was examined by the wound-closure assay. <b>E.</b> Effects of SPRC, SAC and paclitaxel liposome on wound closure speed. Values are expressed as % of control. * represent significant difference between control vs. SPRC, SAC and paclitaxel liposome groups (p<0.01). <sup>#</sup> represent significant difference (p<0.01) between SPRC vs SPRC+PAG group (p<0.01).</p
    corecore