609 research outputs found

    Overlapping-gate architecture for silicon Hall bar MOSFET devices in the low electron density regime

    Full text link
    We report the fabrication and study of Hall bar MOSFET devices in which an overlapping-gate architecture allows four-terminal measurements of low-density 2D electron systems, while maintaining a high density at the ohmic contacts. Comparison with devices made using a standard single gate show that measurements can be performed at much lower densities and higher channel resistances, despite a reduced peak mobility. We also observe a voltage threshold shift which we attribute to negative oxide charge, injected during electron-beam lithography processing.Comment: 4 pages, 4 figures, submitted for Applied Physics Letter

    Autonomic Innervation and Segmental Muscular Disconnections at the Human Pulmonary Vein-Atrial Junction Implications for Catheter Ablation of Atrial-Pulmonary Vein Junction

    Get PDF
    ObjectivesThis study sought to examine the muscle connections and autonomic nerve distributions at the human pulmonary vein (PV)-left atrium (LA) junction.BackgroundOne approach to catheter ablation of atrial fibrillation (AF) is to isolate PV muscle sleeves from the LA. Elimination of vagal response further improves success rates.MethodsWe performed immunohistochemical staining on 192 circumferential venoatrial segments (32 veins) harvested from 8 autopsied human hearts using antibodies to tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT).ResultsMuscular discontinuities of widths 0.1 to 5.5 mm (1.1 ± 1.0 mm) and abrupt 90° changes in fiber orientation were found in 70 of 192 (36%) and 36 of 192 (19%) of PV-LA junctions, respectively. Although these anisotropic features were more common in the anterosuperior junction (p < 0.01), they were also present around the entire PV-LA junction. Autonomic nerve density was highest in the anterosuperior segments of both superior veins (p < 0.05 versus posteroinferior) and inferior segments of both inferior veins (p < 0.05 vs. superior), highest in the LA within 5 mm of the PV-LA junction (p < 0.01), and higher in the epicardium than endocardium (p < 0.01). Adrenergic and cholinergic nerves were highly co-located at tissue and cellular levels. A significant proportion (30%) of ganglion cells expressed dual adrenocholinergic phenotypes.ConclusionsMuscular discontinuities and abrupt fiber orientation changes are present in >50% of PV-LA segments, creating significant substrates for re-entry. Adrenergic and cholinergic nerves have highest densities within 5 mm of the PV-LA junction, but are highly co-located, indicating that it is impossible to selectively target either vagal or sympathetic nerves during ablation procedures

    Overlapping-gate architecture for silicon Hall bar MOSFET devices in the low electron density and high magnetic field regime

    Full text link
    A common issue in low temperature measurements of enhancement-mode metal-oxide-semiconductor (MOS) field-effect transistors (FETs) in the low electron density regime is the high contact resistance dominating the device impedance. In that case a voltage bias applied across the source and drain contact of a Hall bar MOSFET will mostly fall across the contacts (and not across the channel) and therefore magneto-transport measurements become challenging. However, from a physical point of view, the study of MOSFET nanostructures in the low electron density regime is very interesting (impurity limited mobility [1], carrier interactions [2,3] and spin-dependent transport [4]) and it is therefore important to come up with solutions [5,6] that work around the problem of a high contact resistance in such devices (c.f. Fig. 1 (a)).Comment: 3 page

    Autonomic Nerve Activity and Blood Pressure in Ambulatory Dogs

    Get PDF
    Background The relationship between cardiac autonomic nerve activity and blood pressure (BP) changes in ambulatory dogs is unclear. Objective To test the hypotheses that simultaneous termination of stellate ganglion nerve activity (SGNA) and vagal nerve activity (VNA) predisposes to spontaneous orthostatic hypotension and that specific β2 adrenoceptor blockade prevents the hypotensive episodes. Methods We used a radiotransmitter to record SGNA, VNA and blood pressure (BP) in 8 ambulatory dogs. Video imaging was used to document postural changes. Results Out of these 8 dogs, 5 showed simultaneous sympathovagal discharges in which the minute by minute integrated SGNA correlated with integrated VNA in a linear pattern (“Group 1”). In these dogs abrupt termination of simultaneous SGNA-VNA at the time of postural changes (as documented by video imaging) was followed by abrupt (>20 mmHg over 4 beats) drops in BP. Dogs without simultaneous on/off firing (“Group 2”) did not have drastic drops in pressure. ICI 118,551 (ICI, a specific β2-blocker) infused at 3.1 µg/kg/hr for 7 days significantly increased BP from 126 (95% confidence interval, CI: 118 to 133) mmHg to 133 (95% CI 125 to141) mmHg (p=0.0001). The duration of hypotension (mean systolic BP < 100 mmHg) during baseline accounted for 7.1% of the recording. The percentage was reduced by ICI to 1.3% (p = 0.01). Conclusions Abrupt simultaneous termination of SGNA-VNA was observed at the time of orthostatic hypotension in ambulatory dogs. Selective β2 adrenoceptor blockade increased BP and reduced the duration of hypotension in this model

    Intermittent left cervical vagal nerve stimulation damages the stellate ganglia and reduces the ventricular rate during sustained atrial fibrillation in ambulatory dogs

    Get PDF
    BACKGROUND: The effects of intermittent open-loop vagal nerve stimulation (VNS) on the ventricular rate (VR) during atrial fibrillation (AF) remain unclear. OBJECTIVE: The purpose of this study was to test the hypothesis that VNS damages the stellate ganglion (SG) and improves VR control during persistent AF. METHODS: We performed left cervical VNS in ambulatory dogs while recording the left SG nerve activity (SGNA) and vagal nerve activity. Tyrosine hydroxylase (TH) staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were used to assess neuronal cell death in the SG. RESULTS: We induced persistent AF by atrial pacing in 6 dogs, followed by intermittent VNS with short ON-time (14 seconds) and long OFF-time (66 seconds). The integrated SGNA and VR during AF were 4.84 mV·s (95% confidence interval [CI] 3.08-6.60 mV·s) and 142 beats/min (95% CI 116-168 beats/min), respectively. During AF, VNS reduced the integrated SGNA and VR, respectively, to 3.74 mV·s (95% CI 2.27-5.20 mV·s; P = .021) and 115 beats/min (95% CI 96-134 beats/min; P = .016) during 66-second OFF-time and to 4.07 mV·s (95% CI 2.42-5.72 mV·s; P = .037) and 114 beats/min (95% CI 83-146 beats/min; P = .039) during 3-minute OFF-time. VNS increased the frequencies of prolonged (>3 seconds) pauses during AF. TH staining showed large confluent areas of damage in the left SG, characterized by pyknotic nuclei, reduced TH staining, increased percentage of TH-negative ganglion cells, and positive TUNEL staining. Occasional TUNEL-positive ganglion cells were also observed in the right SG. CONCLUSION: VNS damaged the SG, leading to reduced SGNA and better rate control during persistent AF

    Polycation-π Interactions Are a Driving Force for Molecular Recognition by an Intrinsically Disordered Oncoprotein Family

    Get PDF
    Molecular recognition by intrinsically disordered proteins (IDPs) commonly involves specific localized contacts and target-induced disorder to order transitions. However, some IDPs remain disordered in the bound state, a phenomenon coined "fuzziness", often characterized by IDP polyvalency, sequence-insensitivity and a dynamic ensemble of disordered bound-state conformations. Besides the above general features, specific biophysical models for fuzzy interactions are mostly lacking. The transcriptional activation domain of the Ewing's Sarcoma oncoprotein family (EAD) is an IDP that exhibits many features of fuzziness, with multiple EAD aromatic side chains driving molecular recognition. Considering the prevalent role of cation-π interactions at various protein-protein interfaces, we hypothesized that EAD-target binding involves polycation- π contacts between a disordered EAD and basic residues on the target. Herein we evaluated the polycation-π hypothesis via functional and theoretical interrogation of EAD variants. The experimental effects of a range of EAD sequence variations, including aromatic number, aromatic density and charge perturbations, all support the cation-π model. Moreover, the activity trends observed are well captured by a coarse-grained EAD chain model and a corresponding analytical model based on interaction between EAD aromatics and surface cations of a generic globular target. EAD-target binding, in the context of pathological Ewing's Sarcoma oncoproteins, is thus seen to be driven by a balance between EAD conformational entropy and favorable EAD-target cation-π contacts. Such a highly versatile mode of molecular recognition offers a general conceptual framework for promiscuous target recognition by polyvalent IDPs. © 2013 Song et al

    Effect Modification of the Association between Short-term Meteorological Factors and Mortality by Urban Heat Islands in Hong Kong

    Get PDF
    Background Prior studies from around the world have indicated that very high temperatures tend to increase summertime mortality. However possible effect modification by urban micro heat islands has only been examined by a few studies in North America and Europe. This study examined whether daily mortality in micro heat island areas of Hong Kong was more sensitive to short term changes in meteorological conditions than in other areas. Method An urban heat island index (UHII) was calculated for each of Hong Kong’s 248 geographical tertiary planning units (TPU). Daily counts of all natural deaths among Hong Kong residents were stratified according to whether the place of residence of the decedent was in a TPU with high (above the median) or low UHII. Poisson Generalized Additive Models (GAMs) were used to estimate the association between meteorological variables and mortality while adjusting for trend, seasonality, pollutants and flu epidemics. Analyses were restricted to the hot season (June-September). Results Mean temperatures (lags 0–4) above 29°C and low mean wind speeds (lags 0–4) were significantly associated with higher daily mortality and these associations were stronger in areas with high UHII. A 1°C rise above 29°C was associated with a 4.1% (95% confidence interval (CI): 0.7%, 7.6%) increase in natural mortality in areas with high UHII but only a 0.7% (95% CI: −2.4%, 3.9%) increase in low UHII areas. Lower mean wind speeds (5th percentile vs. 95th percentile) were associated with a 5.7% (95% CI: 2.7, 8.9) mortality increase in high UHII areas vs. a −0.3% (95% CI: −3.2%, 2.6%) change in low UHII areas. Conclusion The results suggest that urban micro heat islands exacerbate the negative health consequences of high temperatures and low wind speeds. Urban planning measures designed to mitigate heat island effects may lessen the health effects of unfavorable summertime meteorological conditions

    The physics of spreading processes in multilayer networks

    Get PDF
    The study of networks plays a crucial role in investigating the structure, dynamics, and function of a wide variety of complex systems in myriad disciplines. Despite the success of traditional network analysis, standard networks provide a limited representation of complex systems, which often include different types of relationships (i.e., "multiplexity") among their constituent components and/or multiple interacting subsystems. Such structural complexity has a significant effect on both dynamics and function. Throwing away or aggregating available structural information can generate misleading results and be a major obstacle towards attempts to understand complex systems. The recent "multilayer" approach for modeling networked systems explicitly allows the incorporation of multiplexity and other features of realistic systems. On one hand, it allows one to couple different structural relationships by encoding them in a convenient mathematical object. On the other hand, it also allows one to couple different dynamical processes on top of such interconnected structures. The resulting framework plays a crucial role in helping achieve a thorough, accurate understanding of complex systems. The study of multilayer networks has also revealed new physical phenomena that remain hidden when using ordinary graphs, the traditional network representation. Here we survey progress towards attaining a deeper understanding of spreading processes on multilayer networks, and we highlight some of the physical phenomena related to spreading processes that emerge from multilayer structure.Comment: 25 pages, 4 figure
    corecore