The study of networks plays a crucial role in investigating the structure,
dynamics, and function of a wide variety of complex systems in myriad
disciplines. Despite the success of traditional network analysis, standard
networks provide a limited representation of complex systems, which often
include different types of relationships (i.e., "multiplexity") among their
constituent components and/or multiple interacting subsystems. Such structural
complexity has a significant effect on both dynamics and function. Throwing
away or aggregating available structural information can generate misleading
results and be a major obstacle towards attempts to understand complex systems.
The recent "multilayer" approach for modeling networked systems explicitly
allows the incorporation of multiplexity and other features of realistic
systems. On one hand, it allows one to couple different structural
relationships by encoding them in a convenient mathematical object. On the
other hand, it also allows one to couple different dynamical processes on top
of such interconnected structures. The resulting framework plays a crucial role
in helping achieve a thorough, accurate understanding of complex systems. The
study of multilayer networks has also revealed new physical phenomena that
remain hidden when using ordinary graphs, the traditional network
representation. Here we survey progress towards attaining a deeper
understanding of spreading processes on multilayer networks, and we highlight
some of the physical phenomena related to spreading processes that emerge from
multilayer structure.Comment: 25 pages, 4 figure