1,615 research outputs found

    A four dukkha state-space model for hand tracking

    Get PDF
    In this paper, we propose a hand tracking method which was inspired by the notion of the four dukkha: birth, aging, sickness and death (BASD) in Buddhism. Based on this philosophy, we formalize the hand tracking problem in the BASD framework, and apply it to hand track hand gestures in isolated sign language videos. The proposed BASD method is a novel nature-inspired computational intelligence method which is able to handle complex real-world tracking problem. The proposed BASD framework operates in a manner similar to a standard state-space model, but maintains multiple hypotheses and integrates hypothesis update and propagation mechanisms that resemble the effect of BASD. The survival of the hypothesis relies upon the strength, aging and sickness of existing hypotheses, and new hypotheses are birthed by the fittest pairs of parent hypotheses. These properties resolve the sample impoverishment problem of the particle filter. The estimated hand trajectories show promising results for the American sign language

    Music symbol recognition

    Get PDF
    This paper focuses on optical music recognition (OMR) system that recognizes the musical symbols on a digitized music sheet and converts them into symbolic music representation. Two main stages are distinguished ? pre-processing and symbol analysis. In the pre-processing stage, staves are detected and removed; while in the symbol analysis stage, each musical symbol is recognized and analyzed. The musical semantics are then determined and converted into symbolic music representation stored in text form

    SPHK1 regulates proliferation and survival responses in triplenegative breast cancer

    Get PDF
    Triple-negative breast cancer (TNBC) is characterized by unique aggressive behavior and lack of targeted therapies. Among the various molecular subtypes of breast cancer, it was observed that TNBCs express elevated levels of sphingosine kinase 1 (SPHK1) compared to other breast tumor subtypes. High levels of SPHK1 gene expression correlated with poor overall and progression- free survival, as well as poor response to Doxorubicin-based treatment. Inhibition of SPHK1 was found to attenuate ERK1/2 and AKT signaling and reduce growth of TNBC cells in vitro and in a xenograft SCID mouse model. Moreover, SPHK1 inhibition by siRNA knockdown or treatment with SKI-5C sensitizes TNBCs to chemotherapeutic drugs. Our findings suggest that SPHK1 inhibition, which effectively counteracts oncogenic signaling through ERK1/2 and AKT pathways, is a potentially important anti-tumor strategy in TNBC. A combination of SPHK1 inhibitors with chemotherapeutic agents may be effective against this aggressive subtype of breast cancer

    Molecular Cloud Evolution III. Accretion vs. stellar feedback

    Full text link
    We numerically investigate the effect of feedback from the ionizing radiation heating from massive stars on the evolution of giant molecular clouds (GMCs) and their star formation efficiency (SFE). We find that the star-forming regions within the GMCs are invariably formed by gravitational contraction. After an initial period of contraction, the collapsing clouds begin forming stars, whose feedback evaporates part of the clouds' mass, opposing the continuing accretion from the infalling gas. The competition of accretion against dense gas consumption by star formation (SF) and evaporation by the feedback, regulates the clouds' mass and energy balance, as well as their SFE. We find that, in the presence of feedback, the clouds attain levels of the SFE that are consistent at all times with observational determinations for regions of comparable SF rates (SFRs). However, we observe that the dense gas mass is larger in general in the presence of feedback, while the total (dense gas + stars) is nearly insensitive to the presence of feedback, suggesting that the total mass is determined by the accretion, while the feedback inhibits mainly the conversion of dense gas to stars. The factor by which the SFE is reduced upon the inclusion of feedback is a decreasing function of the cloud's mass, for clouds of size ~ 10 pc. This naturally explains the larger observed SFEs of massive-star forming regions. We also find that the clouds may attain a pseudo-virialized state, with a value of the virial mass very similar to the actual cloud mass. However, this state differs from true virialization in that the clouds are the center of a large-scale collapse, continuously accreting mass, rather than being equilibrium entities.Comment: Submitted to ApJ (abstract abridged

    Interleukins, laminin and epstein - barr virus latent membrane protein 1 (EBV LMP1) Promote metastatic phenotype in nasopharyngeal carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nasopharyngeal carcinoma (NPC) is a type of neoplasm that is highly prevalent in East Asia and Africa with Epstein-Barr virus (EBV), genetic, and dietary factors implicated as possible aetiologic factors. Previous studies suggested the association of certain cytokines with the invasion and metastatic properties of NPC. The present study examined the roles of EBV latent membrane protein-1 (LMP1), interleukin-6 (IL-6), interleukin-10 (IL-10), transforming growth factor-beta 1 (TGF-β1) and laminin in the regulation of matrix-metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) in NPC. The effects of these factors on <it>bmi-1</it>, an oncogene, and <it>ngx6</it>, a tumour suppressor gene, were also investigated.</p> <p>Methods</p> <p>TW01 cells expressing LMP1 (TW01-LMP1) were established via transfection with the B95.8 EBV LMP1 gene. Both TW01 and TW01-LMP1 cells were treated with 100 pg/ml IL-6, 1000 pg/ml IL-10 and 100 pg/ml TGF-β1, separately and also in combination at their respective concentration for 48 hours. Treated cells were subjected to laminin adherence assay. The cells were also cultured with and without laminin and assayed for MMP-3, MMP-9 and VEGF production using enzyme-linked immunosorbent assay (ELISA). The cellular apoptotic property was analysed using caspase-3 apoptosis assay. The expression of <it>bmi-1 </it>and <it>ngx6 </it>gene was investigated using real time reverse transcriptase polymerase chain reaction.</p> <p>Results</p> <p>LMP1 was found to reduce the adherence of NPC cells towards laminin (p < 0.05) as compared to control. Treatment with IL-6 at 100 pg/ml enhanced the production of MMP-9 in both TW01 and TW01-LMP1 cells (p < 0.05). When cultured on laminin, the levels of MMP-3 and VEGF were significantly increased (p < 0.05) in TW01-LMP1 cells. TW01-LMP1 cells had relatively greater resistance to apoptosis as compared to TW01 cells (p < 0.05). Laminin, IL-6 and LMP1 were found to up-regulate the expression of <it>bmi-1 </it>and suppressed the expression of <it>ngx6</it>.</p> <p>Conclusions</p> <p>We conclude that IL-6 reduced cell adherence towards laminin and increased MMP-9 production in NPC cells. Our data suggested that EBV LMP1 was able to confer resistance of apoptosis and increased MMP-9 production in NPC cells. When cultured on laminin, TW01 cells expressing the EBV LMP1 (TW0-LMP1) that were treated with IL-6 at 100 pg/ml displayed increased MMP-9 production, up-regulation of <it>bmi-1 </it>oncogene expression and down-regulation of <it>ngx6 </it>tumour suppressor gene expression. These findings implicate the roles of EBV LMP1, laminin and IL-6 in the promotion of invasion and metastasis in NPC.</p

    Potential of gene drives with genome editing to increase genetic gain in livestock breeding programs

    Get PDF
    Abstract Background This paper uses simulation to explore how gene drives can increase genetic gain in livestock breeding programs. Gene drives are naturally occurring phenomena that cause a mutation on one chromosome to copy itself onto its homologous chromosome. Methods We simulated nine different breeding and editing scenarios with a common overall structure. Each scenario began with 21 generations of selection, followed by 20 generations of selection based on true breeding values where the breeder used selection alone, selection in combination with genome editing, or selection with genome editing and gene drives. In the scenarios that used gene drives, we varied the probability of successfully incorporating the gene drive. For each scenario, we evaluated genetic gain, genetic variance ( \u3c3 A 2 ) , rate of change in inbreeding ( \u394 F ), number of distinct quantitative trait nucleotides (QTN) edited, rate of increase in favourable allele frequencies of edited QTN and the time to fix favourable alleles. Results Gene drives enhanced the benefits of genome editing in seven ways: (1) they amplified the increase in genetic gain brought about by genome editing; (2) they amplified the rate of increase in the frequency of favourable alleles and reduced the time it took to fix them; (3) they enabled more rapid targeting of QTN with lesser effect for genome editing; (4) they distributed fixed editing resources across a larger number of distinct QTN across generations; (5) they focussed editing on a smaller number of QTN within a given generation; (6) they reduced the level of inbreeding when editing a subset of the sires; and (7) they increased the efficiency of converting genetic variation into genetic gain. Conclusions Genome editing in livestock breeding results in short-, medium- and long-term increases in genetic gain. The increase in genetic gain occurs because editing increases the frequency of favourable alleles in the population. Gene drives accelerate the increase in allele frequency caused by editing, which results in even higher genetic gain over a shorter period of time with no impact on inbreeding

    The hydrological cycle and ocean circulation of the Maritime Continent in the Pliocene: results from PlioMIP2

    Get PDF
    The Maritime Continent (MC) forms the western boundary of the tropical Pacific Ocean, and relatively small changes in this region can impact the climate locally and remotely. In the mid-Piacenzian warm period of the Pliocene (mPWP; 3.264 to 3.025 Ma) atmospheric CO2 concentrations were ∼ 400 ppm, and the subaerial Sunda and Sahul shelves made the land–sea distribution of the MC different to today. Topographic changes and elevated levels of CO2, combined with other forcings, are therefore expected to have driven a substantial climate signal in the MC region at this time. By using the results from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2), we study the mean climatic features of the MC in the mPWP and changes in Indonesian Throughflow (ITF) with respect to the preindustrial. Results show a warmer and wetter mPWP climate of the MC and lower sea surface salinity in the surrounding ocean compared with the preindustrial. Furthermore, we quantify the volume transfer through the ITF; although the ITF may be expected to be hindered by the subaerial shelves, 10 out of 15 models show an increased volume transport compared with the preindustrial. In order to avoid undue influence from closely related models that are present in the PlioMIP2 ensemble, we introduce a new metric, the multi-cluster mean (MCM), which is based on cluster analysis of the individual models. We study the effect that the choice of MCM versus the more traditional analysis of multi-model mean (MMM) and individual models has on the discrepancy between model results and data. We find that models, which reproduce modern MC climate well, are not always good at simulating the mPWP climate anomaly of the MC. By comparing with individual models, the MMM and MCM reproduce the preindustrial sea surface temperature (SST) of the reanalysis better than most individual models and produce less discrepancy with reconstructed sea surface temperature anomalies (SSTA) than most individual models in the MC. In addition, the clusters reveal spatial signals that are not captured by the MMM, so that the MCM provides us with a new way to explore the results from model ensembles that include similar models

    Temporary epicardial cardiac resynchronisation versus conventional right ventricular pacing after cardiac surgery: study protocol for a randomised control trial

    Get PDF
    Background: Heart failure patients with stable angina, acute coronary syndromes and valvular heart disease may benefit from revascularisation and/or valve surgery. However, the mortality rate is increased- 5-30%. Biventricular pacing using temporary epicardial wires after surgery is a potential mechanism to improve cardiac function and clinical endpoints. Method/design: A multi-centred, prospective, randomised, single-blinded, intervention-control trial of temporary biventricular pacing versus standard pacing. Patients with ischaemic cardiomyopathy, valvular heart disease or both, an ejection fraction ≤ 35% and a conventional indication for cardiac surgery will be recruited from 2 cardiac centres. Baseline investigations will include: an electrocardiogram to confirm sinus rhythm and measure QRS duration; echocardiogram to evaluate left ventricular function and markers of mechanical dyssynchrony; dobutamine echocardiogram for viability and blood tests for renal function and biomarkers of myocardial injury- troponin T and brain naturetic peptide. Blood tests will be repeated at 18, 48 and 72 hours. The principal exclusions will be subjects with permanent atrial arrhythmias, permanent pacemakers, infective endocarditis or end-stage renal disease. After surgery, temporary pacing wires will be attached to the postero-lateral wall of the left ventricle, the right atrium and right ventricle and connected to a triple chamber temporary pacemaker. Subjects will be randomised to receive either temporary biventricular pacing or standard pacing (atrial inhibited pacing or atrial-synchronous right ventricular pacing) for 48 hours. The primary endpoint will be the duration of level 3 care. In brief, this is the requirement for invasive ventilation, multi-organ support or more than one inotrope/vasoconstrictor. Haemodynamic studies will be performed at baseline, 6, 18 and 24 hours after surgery using a pulmonary arterial catheter. Measurements will be taken in the following pacing modes: atrial inhibited; right ventricular only; atrial synchronous-right ventricular; atrial synchronous-left ventricular and biventricular pacing. Optimisation of the atrioventricular and interventricular delay will be performed in the biventricular pacing group at 18 hours. The effect of biventricular pacing on myocardial injury, post operative arrhythmias and renal function will also be quantified
    corecore